Fluid Mechanics and Flight Mechanics

Numerical Simulation Technology of High Lift Trapezoidal Wing Configuration

  • WANG Yuntao ,
  • LI Song ,
  • MENG Dehong ,
  • LI Wei
Expand
  • Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2014-02-24

  Revised date: 2014-05-06

  Online published: 2014-05-28

Supported by

Key Basic Research Program of China (2014CB744803)

Abstract

Based on the Reynolds-averaged Navier-Stokes(RANS) equations and structured grid technology, the National Aeronautics and Space Administration(NASA) high lift trapezoidal wing (Trap wing) model is simulated using TRIsonic Platform version 3.0(TRIP3.0). The influence of various factors on aerodynamic characteristics is studied, which include control equations, grid density, flow transition and initial condition. The corresponding wind tunnel experiment is conducted in the NASA Langley 14 ft22 ft subsonic wind tunnel in 2002; the experimental data includes basic force and moment, surface pressure data and velocity distribution in the boundary layer. Compared with the experimental data, the numerical results illustrate that solving the full RANS equations provides better numerical accuracy to the tip vortex; the grid density mainly affects the intensity of the wing tip vortex, better accuracy in the boundary layer with transition model results in better lift and pitch moment coefficients and the maximum lift coefficient and stall angle depend on the initial flow conditions.

Cite this article

WANG Yuntao , LI Song , MENG Dehong , LI Wei . Numerical Simulation Technology of High Lift Trapezoidal Wing Configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3213 -3221 . DOI: 10.7527/S1000-6893.2014.0095

References

[1] Rumsey C L, Ying S X. Prediction of high lift: review of present CFD capability[J]. Progress in Aerospace Sciences, 2002, 38(2): 145-180.

[2] Zhu Z Q, Chen Y C, Wu Z C. Numerical simulation of high lift system configuration[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 257-262. (in Chinese) 朱自强, 陈迎春, 吴宗成. 高升力系统外形的数值模拟计算[J]. 航空学报, 2005, 26(3): 257-262.

[3] Zhang W S, Chen H X, Zhang Y F,et al. Nacelle strake's aerodynamic characteristics effects on high-lift configuration of transport aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 76-85. (in Chinese) 张文升, 陈海昕, 张宇飞, 等. 短舱扰流片对运输机增升装置气动特性的影响[J]. 航空学报, 2013, 34(1): 76-85.

[4] Cui Z, Han D, Li J B. Study on aerodynamic characteristics of airfoil with gurney flaps under high subsonic flow[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(10): 2277-2286. (in Chinese) 崔钊, 韩东, 李建波. 翼型加装格尼襟翼的高亚声速气动特性研究[J]. 航空学报, 2013, 34(10): 2277-2286.

[5] Rogers S E, Roth K, Nash S M. CFD validation of high-lift flows with significant wind-tunnel effects, AIAA-2000-4218[R]. Reston: AIAA, 2000.

[6] van der Burg J W, von Geyr H F, Heinrich R, et al. Geometrical model installation and deformation effects in the European project EUROLIFT II, AIAA-2007-4297[R]. Reston: AIAA, 2007.

[7] Heinz H. Overview about the European high lift research programme EUROLIFT, AIAA-2004-0767[R]. Reston: AIAA, 2004.

[8] Rudnik R, von Geyr H F. The European high lift project EUROLIFT II-objectives, approach, and structure, AIAA-2007-4296[R]. Reston: AIAA, 2007.

[9] Slotnick J P, Hannon J A, Chaffin M. Overview of the first AIAA CFD high lift prediction workshop(invited), AIAA-2011-0862[R]. Reston: AIAA, 2011.

[10] Rumsey C L, Long M, Stuever R A. Summary of the first AIAA CFD high lift prediction workshop(invited), AIAA-2011-0939[R]. Reston: AIAA, 2011.

[11] Johnson P L, Jones K M, Madson M D. Experimental investigation of a simplified 3D high lift configuration in support of CFD validation, AIAA-2000-4217[R]. Reston: AIAA, 2000.

[12] Rogers S E, Roth K, Nash S M. Validation of computed high-lift flows with significant wind-tunnel effect[J]. AIAA Journal, 2001, 39(10): 1884-1892.

[13] van Leer B. Towards the ultimate conservative differences scheme[J]. Journal of Computational Physics, 1997, 135: 229-248.

[14] Menter F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8): 1598-1605.

[15] Menter F R, Langtry R B, Likki S R, et al. A correlation based transition model using local variables: part I-model formulation[J]. Journal of Turbomachinery, 2004, 128(3): 413-422.

[16] Zhang Y L, Wang G X, Meng D H, et al. Calibration of γ-Reθ transition model[J]. Acta Aerodynamica Sinica, 2011, 29(3): 295-301. (in Chinese) 张玉伦, 王光学, 孟德虹, 等.γ-Reθ转捩模型的标定研究[J]. 空气动力学学报, 2011, 29(3): 295-301.

[17] Meng D H, Zhang Y L, Wang G X, et al. Application of γ-Reθ transition model to two-dimensional low speed flows[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 792-801. (in Chinese) 孟德虹, 张玉伦, 王光学, 等. γ-Reθ转捩模型在二维低速问题中的应用[J]. 航空学报, 2011, 32(5): 792-801.

[18] Sclafani A J, Slotnick J P, Vassberg J C, et al. Extended OVERFLOW analysis of the NASA trap wing wind tunnel model, AIAA-2012-2919[R]. Reston: AIAA, 2012.

Outlines

/