ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Applications of Wireless MEMS Sensing System in Gas Turbine and Harsh Environment
Received date: 2014-03-21
Revised date: 2014-04-25
Online published: 2014-05-07
Supported by
Tsinghua University Initiative Scientific Research Program (20131089351)
Gas turbine is one kind of the core equipment widely applied to many fields such as aviation, energy, sea and land traffic. The real-time monitoring of various environmental parameters in the process of gas turbine work (such as temperature, pressure etc.) can further improve the structure of gas turbine, improve efficiency, reduce emissions and reduce maintenance costs. A new recently developed sensing system based on micro electro mechanical system (MEMS) technology scores high marks in harsh environment (high-temperature,high-pressure), especially has a great potential for application in the monitoring of various environmental parameters of the gas turbine which is the representative of large mechanical and electrical equipment working in harsh environment. In this paper, the sensing technology in harsh environment, wireless signal transmission technology and the implementation scheme of SiC wireless MEMS sensing system are introduced, reviewed and discussed, and the wireless MEMS sensing system application in gas turbine and harsh environment such as gas turbine is overlooked.
YOU Zheng , WANG Weizhong , CHEN Shuo , RUAN Yong . Applications of Wireless MEMS Sensing System in Gas Turbine and Harsh Environment[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(8) : 2081 -2090 . DOI: 10.7527/S1000-6893.2014.0084
[1] Boyce M P. Gas turbine engineering handbook[M]. Waltham: Elasevier, 2012: 6-11.
[2] Pisano A P.Harsh environment wireless MEMS sensors for energy & power. Berkeley:University of California-Berkeley,2009.
[3] Zheng H F, Tang H. Establishment and research on mathematical model of isothermal combustion process inside the turbine[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1400-1405. (in Chinese) 郑海飞, 唐豪. 涡轮内等温燃烧数学模型的建立与研究[J]. 航空学报, 2012, 33(8): 1400-1405.
[4] Luo Z H, Li J, Yang P, et al. Characteristics of casing static pressure during compressor stall[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2092-2099. (in Chinese) 罗志煌, 李军, 杨朴, 等.压气机失速过程中的壁面压力分布特征[J]. 航空学报, 2013, 34(9): 2092-2099.
[5] Wang A, Xiao H, Wang J, et al. Self-calibrated interferometric-intensity-based optical fiber sensors[J]. Journal of Lightwave Technology, 2001, 19(10): 1495-1501.
[6] Willsch M, Bosselmann T, Flohr P, et al. Design of fiber optical high temperature sensors for gas turbine monitoring//20th International Conference on Optical Fibre Sensors.Washington, D.C.: SPIE, 2009: 75037R1-75037R4.
[7] Palmer M E, Davis M A, Fielder R S. Commercial demonstration of un-cooled pressure sensor for gas-turbine engine monitoring//ASME Turbo Expo 2007: Power for Land, Sea, and Air. New York: American Society of Mechanical Engineers, 2007: 865-874.
[8] Wang J, Dong B, Lally E, et al. Multiplexed high temperature sensing with sapphire fiber air gap-based extrinsic Fabry-Perot interferometers[J]. Optics Letters, 2010, 35(5): 619-621.
[9] Riza N A, Sheikh M. All-silicon carbide hybrid wireless-wired optics temperature sensor: Turbine tests and distributed fiber sensor network design[J]. Proceedings of SPIE, 2009, 7356: 73560O-1-73560O-5.
[10] Riza N A, Sheikh M, Perez F. Hybrid wireless-wired optical sensor for extreme temperature measurement in next generation energy efficient gas turbines[J]. Journal of Engineering for Gas Turbines & Power, 2010, 132(5): 051601-1-051601-11.
[11] Wild G. Optical fiber bragg grating sensors applied to gas turbineengine instrumentation and monitoring//Sensors Applications Symposium, 2013: 188-192.
[12] Lee B. High-density fiber optical sensor and instrumentation for gas turbine operation condition monitoring[J]. Journal of Sensors, 2013.(in press)
[13] Thompson H A. Wireless sensor research at the rolls-royce control and systems university technology centre//1st International Conference on Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic Systems Technology.New York: IEEE, 2009: 571-576.
[14] Thompson H A. Wireless and Internet communications technologies for monitoring and control[J]. Control Engineering Practice, 2004, 12(6): 781-791.
[15] Lynch J P, Law K H, Kiremidjian A S, et al. Validation of a wireless modular monitoring system for structures//SPIE's 9th Annual International Symposium on Smart Structures and Materials. Washington, D.C.: SPIE, 2002: 124-135.
[16] Bates J B, Gruzalski G R, Luck C F. Rechargeable solid state lithium microbatteries//Proceedings of IEEE Micro Electro Mechanical Systems: An Investigation of Micro Structures, Sensors, Actuators, Machines and Systems. New York: IEEE, 1993: 82-86.
[17] Lee S H, Jee S H, Yoon Y S. Study on super stable all-solid-state battery at high temperature//PRICM-8: Proceedings of the 8th Pacific Rim International Conference on Advanced Materials and Processing. Hawaii: John Wiley & Sons, 2013: 197.
[18] Wang Z J, Du J L, Li Z L, et al. Sol-gel synthesis of Co-doped LiMn2O4 with improved high-rate properties for high-temperature lithium batteries[J]. Ceramics International, 2014, 40(2): 3527-3531.
[19] Toriyama T, Yajima M, Sugiyama S. Thermoelectric micro power generator utilizing self-standing polysilicon-metal thermopile//The 14th IEEE International Conference on Micro Electro Mechanical Systems. New York: IEEE, 2001: 562-565.
[20] Sato N, Ishii H, Urano M, et al. Novel MEMS power generator with integrated thermoelectric and vibrational devices//The 13th International Conference on Solid-State Sensors, Actuators and Microsystems.New York: IEEE, 2005, 1: 295-298.
[21] Lai Y J, Li W C, Lin C M, et al. High-temperature stable piezoelectric aluminum nitride energy harvesters utilizing elastically supported diaphragms//The 17th International Conference on Solid-State Sensors,Actuators and Microsystems (TRANSDUCER-S&EUROSENSORS XXVII). New York: IEEE, 2013: 2268-2271.
[22] Fonseca M A, English J M, Von Arx M, et al. Wireless micromachined ceramic pressure sensor for high-temperature applications[J]. Journal of Microelectromechanical Systems, 2002, 11(4): 337-343.
[23] Mehregany M, Zorman C A, Rajan N, et al. Silicon carbide MEMS for harsh environments[J]. Proceedings of the IEEE, 1998, 86(8): 1594-1609.
[24] Tong L, Mehregany M, Matus L G. Silicon carbide as a new micromechanics material//Solid-State Sensor and Actuator Workshop.New York: IEEE, 1992: 198-201.
[25] Levinshtein M E, Rumyantsev S L, Shur M S,Properties of advanced semiconductor materials: GaN, AIN, InN, BN, SiC, SiGe[M]. Hawaii: John Wiley & Sons, 2001: 5.1-5.6.
[26] Senesky D G. Wide bandgapsemiconductors for sensing within extreme harsh environments[J]. ECS Transactions, 2013, 50(6): 233-238.
[27] Neudeck P G. Silicon carbide technology[M]. 2006: 5.1-5.34.
[28] Okojie R S. Stable 600℃ silicon carbide MEMS pressure transducers[J]. Proceedings of SPIE, 2007, 6555: 65550V-1-65550V-11.
[29] Young D J, Du J, Zorman C A, et al. High-temperature single-crystal 3C-SiC capacitive pressure sensor[J]. IEEE Sensors Journal, 2004, 4(4): 464-470.
[30] Wu C H, Zorman C A, Mehregany M. Fabrication and testing of bulk micromachined silicon carbide piezoresistive pressure sensors for high temperature applications[J]. IEEE Sensors Journal, 2006, 6(2): 316-324.
[31] Chen L, Mehregany M. A silicon carbide capacitive pressure sensor for in-cylinder pressure measurement[J]. Sensors and Actuators A: Physical, 2008, 145-146: 2-8.
[32] Simsek E, Pecholt B, Everson C, et al. High-pressure deflection behavior of laser micromachined bulk 6H-SiC MEMS sensor diaphragms[J]. Sensors and Actuators A: Physical, 2010, 162(1): 29-35.
[33] Wieczorek G, Schellin B, Obermeier E, et al. SiC based pressure sensor for high-temperature environments//IEEE Sensors 2007 Conference. New York: IEEE, 2007: 748-751.
[34] Pakula L S, Yang H, Pham H T M, et al. Fabrication of a CMOS compatible pressure sensor for harsh environments[J]. Journal of Micromechanics and Microengineering, 2004, 14(11): 1478-1483.
[35] Akiyama T, Briand D, de Rooij N F. Piezoresistive n-type 4H-SiC pressure sensor with membrane formed by mechanical milling//IEEE Sensors 2011. New York: IEEE, 2011: 222-225.
[36] Okojie R S, Beheim G M, Saad G J, et al. Characteristics of a hermetic 6H-SiC pressure sensor at 600℃//AIAA Space 2001 Conference and Exposition. Reston: AIAA, 2001: 28-30.
[37] Myers D R, Chen L, Wijesundara M B J, et al. Silicon carbide resonant tuning fork for microsensing applications in high-temperature and high G-shock environments[J]. Journal of Micro/Nanolithography, MEMS, and MOEMS, 2009, 8(2): 021116-1-021116-7.
[38] Riza N A, Sheikh M, Perez F. Hybrid wireless-wired optical sensor for extreme temperature measurement in next generation energy efficient gas turbines[J]. Journal of Engineering for Gas Turbines and Power, 2010, 132(5): 051601-1-051601-11.
[39] Tang W, Zheng B, Liu L, et al. Complementary metal-oxide semiconductor-compatible silicon carbide pressure sensors based on bulk micromachining[J]. Micro & Nano Letters, 2011, 6(4): 265-268.
[40] Yan Z L. Research on apiezoresistivesilicon carbide pressure sensor for high temperature applications. Beijing: Tsinghua University, 2011.(in Chinese) 严子林. 碳化硅高温压力传感器设计与工艺实验研究. 北京: 清华大学, 2011.
[41] Neudeck P, Krasowski M, Prokop N. Assessment of durable SiC JFET technology for +600℃ to -125℃ integrated circuit operation[J]. ECS Transactions, 2011, 41(8): 163-176.
[42] Soong C W, Garverick S L, Fu X A, et al. A fully monolithic 6H-SiC JFET-based transimpedanceamplifier for high-temperature capacitive sensing[J]. IEEE Transactionson Electron Devices,2013,60(12): 4146-4151.
[43] Wang R, Ko W H, Young D J. Silicon-carbide MESFET-based 400℃ MEMS sensing and data telemetry[J]. IEEE Sensors Journal, 2005, 5(6): 1389-1394.
[44] Maralani A, Mazzola M S, Pisano A P.Vertical channel silicon carbide JFETs based operational amplifiers[J].Materials Science Forum, 2013, 740-742: 1069-1072.
[45] Maralani A, Mazzola M S. The design of an operational amplifier using silicon carbide JFETs[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2012, 59(2): 255-265.
[46] Yang J. A silicon carbide wireless temperature sensing system for high temperature applications[J]. Sensors, 2013, 13(2): 1884-1901.
[47] Yang J. A harsh environment wireless pressure sensing solution utilizing high temperature electronics[J]. Sensors, 2013, 13(3): 2719-2734.
[48] Wijesundara M, Azevedo R. Silicon carbide microsystems for harsh environments[M]. 2011: 224-226.
[49] DeHennis A, Wise K D. A double-sided single-chip wireless pressure sensor//The Fifteenth IEEE International Conference on Micro Electro Mechanical Systems. New York: IEEE, 2002: 252-255.
[50] Sardini E, Serpelloni M. Wireless measurement electronics for passive temperature sensor[J]. IEEE Transactions on Instrumentation and Measurement, 2012, 61(9): 2354-2361.
[51] Tan Q, Kang H, Xiong J, et al. A wireless passive pressure microsensorfabricated in HTCC MEMS technology for harsh environments[J]. Sensors, 2013, 13(8): 9896-9908.
[52] Zhang H, Hong Y, Ge B, et al. A novel readout system for wireless passive pressure sensors[J]. Photonic Sensors, 2014, 4(1): 70-76.
[53] Chevalerias O, O'Donnell T, Power D, et al. Inductive telemetry of multiple sensor modules[J]. IEEE Pervasive Computing, 2005, 4(1): 46-52.
[54] Birdsell E D, Park J W, Allen M G. Wireless ceramic sensors operating in high temperature environments//40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Reston: AIAA, 2004: 1-11.
[55] Birdsell E, Allen M G. Wireless chemical sensors for high temperature environments//Solid-State Sensor, Actuator, and Microsystems Workshop, 2006: 212-215.
[56] Pereira da Cunha M, Lad R J, Davulis P, et al. Wireless acoustic wave sensors and systems for harsh environment applications//2011 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). New York: IEEE, 2011: 41-44.
[57] Lee K, Wang W, Kim T, et al. A novel 440 MHz wireless SAW microsensor integrated with pressure-temperature sensors and ID tag [J]. Journal of Micromechanics and Microengineering, 2007, 17(3): 515-523.
[58] Elmazria O, Aubert T. Wireless SAW sensor for high temperature applications: material point of view[J]. Proceedings of SPIE, 2011,8066: 806602-1-806602-10.
[59] Canabal A, Davulis P M, Pollard T, et al. Multi-sensor wireless interrogation of SAW resonators at high temperatures//2010 IEEE Ultrasonics Symposium (IUS).New York: IEEE, 2010: 265-268.
[60] Lin C M, Chen Y Y, Felmetsger V V, et al. Surface acoustic wave devices on AlN/3C-SiC/Si multilayer structures [J]. Journal of Micromechanics and Microengineering, 2013, 23(2): 025019-1-025019-8.
[61] Greve D W, Chin T L, Zheng P, et al. Surface acoustic wave devices for harsh environment wireless sensing[J]. Sensors, 2013, 13(6): 6910-6935.
[62] Bao K, Chen D, Shi Q, et al. A readout circuit for wireless passive resonant-circuit sensors//IEEE Sensors 2013. New York: IEEE, 2013: 1-4.
[63] Li P, Xie H, Wen Y, et al. A SAW passive wireless sensor system for monitoring temperature of an electric cord connector at long distance//IEEE Sensors 2011. New York: IEEE, 2011: 1831-1834.
[64] Ren X, Ebadi S, Cheng H, et al. Wireless resonant frequency detection of SiCN ceramic resonator for sensor applications//2011 IEEE International Symposium on Antennas and Propagation (APSURSI). New York: IEEE, 2011: 1856-1859.
[65] Ren X, Ebadi S, Chen Y, et al. Characterization of SiCNceramic material dielectric properties at high temperatures for harsh environment sensing applications[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(2): 960-971.
[66] Li Y, Yu Y X, San H S, et al. Wireless passive polymer-derived SiCN ceramic sensor with integrated resonator/antenna[J].Applied Physics Letters, 2013, 103(16): 163505-1-163505-5.
/
〈 |
|
〉 |