ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Damage rule of 2A12-T4 aluminum alloy with long-term atmospheric corrosion
Received date: 2014-04-08
Revised date: 2014-04-24
Online published: 2014-04-29
Supported by
National Natural Science Foundation of China (51475470, 51201182)
Atmospheric corrosion tests on 2A12-T4 aluminum alloy are carried out in Wanning, Hainan province for 7 years, 12 years and 20 years. According to the difference of corrosion characteristics, corrosion regions are divided into one direction corrosion region and cross directions corrosion region. Using the minimum value of plate thickness as corrosion characteristic quantity, the minimum thicknesses of different regions on different specimens are measured, and a statistical study of the minimum thickness for these regions is carried out. The minimum values of plate thickness with reliability 99.9% and confidence 95% are obtained, and the confidence intervals of the minimum thickness with confidence 95% are determined. Furthermore, the corrosion damage morphologies of different regions on different specimens are studied by metallographic method. The results show that the corrosion characteristic quantity of 2A12-T4 in atmospheric corrosion environment is in conformity with normal distribution. The minimum thickness of 2A12-T4 plate decreases linearly from 7 years to 20 years. The 2A12-T4 is in a transition period of pitting to intergranular corrosion to exfoliation corrosion after 7 years atmospheric corrosion. Total exfoliation corrosion occurs on specimens exposed for 12 years, and severe exfoliation corrosion with pitting can be found on specimens exposed for 20 years. Compared with one direction corrosion region, cross directions region corrodes deeply and peels significantly.
ZHANG Teng , HE Yuting , GAO Chao , LI Changfan , SHAO Qing . Damage rule of 2A12-T4 aluminum alloy with long-term atmospheric corrosion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015 , 36(2) : 661 -671 . DOI: 10.7527/S1000-6893.2014.0072
[1] Cui C J, Chen Q Z, Wang Y Y, et al. Corrosion behavior of LY12CZ aluminum alloy in a laboratory simulated atmospheric environment of one airport[J]. Corrosion Science and Projection Technology, 2009, 21(3): 291-294 (in Chinese). 崔常京, 陈群志, 王逾涯, 等. 模拟某机场大气环境下LY12CZ铝合金的腐蚀行为及其当量关系的建立[J]. 腐蚀科学与防护技术, 2009, 21(3): 291-294.
[2] Wang Z Y, Ma T, Han W, et al. Corrosion behavior on aluminum alloy LY12 in simulated atmospheric corrosion process[J]. Transactions of Nonferrous Metals Society of China, 2007, 17(2): 326-334.
[3] Hu Y L, Li D, Guo B L. Statistical study of corrosion dynamics law and method to predict calendar life for LY12CZ aluminum alloy[J]. Acta Aeronautica et Astronautica Sinica, 2000, 21(Sup.): S53-S57 (in Chinese). 胡艳玲, 李狄, 郭宝兰. LY12CZ铝合金型材的腐蚀动力学统计规律研究及日历寿命预测方法探讨[J]. 航空学报, 2000, 21(增刊): S53-S57.
[4] Xie W J, Li D, Hu Y L, et al. Statistical study of corrosion kinetics law for LY12CZ and 7075T7351 aluminum alloy in EXCO solution[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(1): 34-38 (in Chinese). 谢伟杰, 李狄, 胡艳玲, 等. LY12CZ和7075T7351铝合金在EXCO溶液中腐蚀动力学的统计研究[J]. 航空学报, 1999, 20(1): 34-38.
[5] Simpon D L, Brooks C L. Tailoring the structural integrity process to meet the challenges of aging aircraft[J]. International Journal of Fatigue, 1999, 21(Sup.1): S1-S14.
[6] Zhang J M, Nie H, Xue C J, et al. Properties and prediction of pre-corrosion strength of aluminum alloy welded joints[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2161-2168 (in Chinese). 张俊苗, 聂宏, 薛彩军, 等. 铝合金焊接接头预腐蚀强度特性及预测[J]. 航空学报, 2013, 34(9): 2161-2168.
[7] Zhang H W, He Y T, Fan C H, et al. Fatigue life prediction method for aircraft metal material under alternative corrosion/fatigue process[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(5): 1114-1121 (in Chinese). 张海威, 何宇廷, 范超华, 等. 腐蚀/疲劳交替作用下飞机金属材料疲劳寿命计算方法[J]. 航空学报, 2013, 34(5): 1114-1121.
[8] Mu Z T, Chen D H, Zhu Z T, et al. Fatigue crack growth behavior of aerospace aluminum alloy LD2 under corrosion[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(3): 574-579 (in Chinese). 穆志韬, 陈定海, 朱做涛, 等. 腐蚀条件下LD2航空铝合金裂纹扩展规律研究[J]. 航空学报, 2013, 34(3): 574-579.
[9] Li C Y, Zhu L Q, Liu H C, et al. Influence of temperature on initial corrosion behavior of aluminum alloy 2A12 in simulated tank water environment[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1493-1500 (in Chinese). 李晨钰, 朱立群, 刘慧丛, 等. 温度对2A12铝合金在模拟油箱积水环境中初期腐蚀行为的影响[J]. 航空学报, 2013, 34(6): 1493-1500.
[10] DuQuesnay D L, Underhill P R, Britt H J. Fatigue crack growth form corrosion damage in 7075-T6511 aluminium alloy under aircraft loading[J]. International Journal of Fatigue, 2003, 25(5): 371-377.
[11] Liu H Y, Wang H B, Zhang Y J. Research on effect of pitting corrosion damage on fatigue life of LY12CZ aluminum alloy[J]. Equipment Environmental Engineering, 2010, 7(2): 5-8 (in Chinese). 刘海燕, 王红斌, 张亚娟. 孔腐蚀损伤对LY12CZ铝合金疲劳寿命的影响研究[J]. 装备环境工程, 2010, 7(2): 5-8.
[12] Gonzalez J A, Morcillo M, Escudero E, et al. Atmospheric corrosion of bare and anodized aluminum in a wide range of environmental conditions[J]. Surface & Coatings Technology, 2002, 153(2-3): 225.
[13] Sun S Q, Zheng Q F, Wen J G. Long-term atmospheric corrosion behavior of aluminum alloys 2024 and 7075 in urban, coastal and industrial environments[J]. Corrosion Science, 2009, 51(4): 719-727.
[14] Wang B B, Wang Z Y, Han W, et al. Atmospheric corrosion of aluminium alloy 2024-T3 exposed to salt lake environment in Western China[J]. Corrosion Science, 2012, 59(6): 63-70.
[15] Melchers R E. Bi-modal trend in the long-term corrosion of aluminium alloys[J]. Corrosion Science, 2014, 82(5): 239-247.
[16] Sriaman M R, Pidapati R M. Life prediction of aircraft aluminum subjected to pitting corrosion under fatigue condition[J]. Journal of Aircraft, 2009, 46(4): 1253-1259.
[17] Ishihara S, Saka S, Nan Z Y, et al. Prediction of corrosion fatigue lives of aluminium alloy on the basis of corrosion pit growth law[J]. Fatigue Fracture Engineering Materials Structure, 2006, 29(6): 472.
[18] Wang Q Y, Kawagoishi N, Chen Q, et al. Evaluation of the probability distribution of pitting corrosion fatigue life in aircraft materials[J]. Acta Mechanica Sinica, 2003, 19(3): 247-252.
[19] Jin P, Yang K, Kuang L. Equivalent treatment of corrosion pits for fatigue life estimation[J]. Equipment Environmental Engineering, 2010, 7(6): 130-133 (in Chinese). 金平, 杨凯, 匡林. 估算疲劳寿命时腐蚀坑的当量化处理[J]. 装备环境工程, 2010, 7(6): 130-133.
[20] Iron and Steel Research Institute. GB/T 19747—2005/ISO 7441: 1984 Corrosion of metals and alloys—Determination of bimetallic corrosion in outdoor exposure corrosion tests[S]. Beijing: Standards Press of China, 2005 (in Chinese). 钢铁研究总院. GB/T 19747—2005/ISO 7441: 1984 金属和合金的腐蚀—双金属室外暴露腐蚀试验[S]. 北京: 中国标准出版社, 2005.
[21] Iron and Steel Research Institute. GB/T 16545—1996/ISO8407: 1991 Corrosion of metals and alloys—Removal of corrosion products from corrosion test specimens[S]. Beijing: Standards Press of China, 1996 (in Chinese). 钢铁研究总院. GB/T 16545—1996/ISO8407: 1991 金属和合金的腐蚀—腐蚀试样上腐蚀产物的清除[S]. 北京: 中国标准出版社, 1996.
[22] Yang X H, Yao W X, Chen Y L. Research on mechanical properties of LY12CZ aluminum alloy under calendar corrosion environment[J]. Journal of Mechanical Strength, 2003, 25(2): 227-228 (in Chinese). 杨晓华, 姚卫星, 陈跃良. 日历环境下LY12CZ铝合金力学性能研究[J]. 机械强度, 2003, 25(2): 227-228.
[23] Chen Y L, Lu G Z, Duan C M. A probability model for the corrosion damage of aircraft structure in service environment[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(3): 249-251 (in Chinese). 陈跃良, 吕国志, 段成美. 服役条件下飞机结构腐蚀损伤概率模型研究[J]. 航空学报, 2002, 23(1): 249-251.
[24] Chen Y L, Yang X H, Qin H Q. Study on corrosion distribution law of aircraft structure[J]. Materials Science & Engineering, 2002, 20(3): 378-380 (in Chinese). 陈跃良, 杨晓华, 秦海勤. 飞机结构腐蚀损伤分布规律研究[J]. 材料科学与工程, 2002, 20(3): 378-380.
[25] Chen C Y. Fatigue and fracture[M]. Wuhan: Huazhong University of Science and Technology Press, 2002: 52 (in Chinese). 陈传尧. 疲劳与断裂[M]. 武汉: 华中科技大学出版社, 2002: 52.
[26] Feng S, Cheng Y P, Zhao Y L, et al. Linear fatigue damage cumulative theory[J]. Journal of Harbin Institute of Technology, 2003, 35(5): 608-610 (in Chinese). 冯胜, 程艳平, 赵亚丽, 等. 线性疲劳损伤累积理论的研究[J]. 哈尔滨工业大学学报, 2003, 35(5): 608-610.
[27] Liu Y J, Wang Z Y, Ke W. Study on influence of native oxide and corrosion products on atmospheric corrosion of pure Al[J]. Corrosion Science, 2014, 80(3): 169-176.
/
〈 | 〉 |