ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Gripping Mode Analysis of an Active-Passive Composited Driving Self-adaptive Gripper Mechanism
Received date: 2014-03-04
Revised date: 2014-03-26
Online published: 2014-04-08
Supported by
National Natural Science Foundation of China (51375034, 61327809)
To meet the need of diverse tasks during on-orbit service, a self-adaptive end effector based on an active-passive composited driver is proposed, which is a two-finger underactuated gripper. This paper focuses on the gripping mode analysis of the proposed gripper. Firstly, the kinematics of the gripper is explained. Secondly, the static equilibrium conditions are deduced from the input and the output virtual powers. Known from the statics, the contact forces in the equilibrium state between the gripper and the object rely not only on the geometrical configuration, but also on the contact locations. While the gripping mode of gripper depends on the contact forces in the constraint space, it leads to the mechanical adaptation of the gripper to the shape of the object based on different contact locations, resulting in different gripping modes, including parallel grip, encompassing grip. Finally, an experimental setup is implemented to analyze the capture process of the gripper towards different shaped objects, and the results validate the self-adaptability of the active-passive composited driving gripper, which lays the foundation for mechanical design and control strategy in future work.
CHU Zhongyi , ZHOU Miao , HU Jian , LU Shan . Gripping Mode Analysis of an Active-Passive Composited Driving Self-adaptive Gripper Mechanism[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(12) : 3451 -3458 . DOI: 10.7527/S1000-6893.2014.0033
[1] Wei C, Zhao Y, Tian H. Grasping control of space robot for capturing floating target[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(3): 632-637. (in Chinese) 魏承, 赵阳, 田浩. 空间机器人捕获漂浮目标的抓取控制[J]. 航空学报, 2010, 31(3): 632-637.
[2] Hirzinger G, Brunner B, Dietrich J, et al. ROTEX-the first remotely controlled robot in space[C]//IEEE International Conference on Robotics and Automation, 1994: 2604-2611.
[3] Townsend W. The BarrettHand grasper-programmable flexible part handling and assembly[J]. Industrial Robot, 2000, 27(3): 181-188.
[4] Edsinger A. Design of a compliant and force sensing hand for a humanoid robot[J]. Intelligent Manipulation and Grasping, 2004, 8(3): 291-295.
[5] Jacobsen S C, Iversen E K, Knutti D F, et al. Design of utah/mit dexterous hand[C]//IEEE International Conference on Robotics and Automation, 2001: 1520-1532.
[6] Diftler M A, Platt R, Culbert C J. Evolution of the NASA/DARPA robonaut control system[C]//IEEE International Conference on Robotics and Automation, 2003: 2543-2548.
[7] Wimbock T, Ott C, Hirzinger G. Impedance behaviors for two-handed manipulation: design and experiments[C]//IEEE International Conference on Robotics and Automation, 2007: 4182-4187.
[8] Chen Z P, Li N Y, Wimbock T, et al. Experimental evaluation of Cartesian and joint impedance control with adaptive friction compensation for the dexterous robot hand DLR-HIT II[J]. International Journal of Humanoid Robotics, 2011, 8(4): 649-671.
[9] Tetsuya M, Takahiro E, Haruhisa K. Review of Gifu hand and its application[J]. Mechanics Based Design of Structure & Machines, 2011, 39(2): 210-228.
[10] Ye J, Pei W. A kind of the underactuated two-fingered multi-phalanges hand of robot with electric actuator[J]. Journal of Machine Design, 2001, 28(5): 51-52. (in Chinese) 叶军, 裴文. 一种欠驱动电动型两指多指节机器人手[J]. 机械设计, 2001, 28(5): 51-52.
[11] He G P, Lu Z, Wang F X. Study on dynamic coupling singularity of underactuated manipulators[J]. Acta Aeronautica et Astronautica Sinica, 2005, 26(2): 240-245. (in Chinese) 何广平, 陆震, 王凤翔. 欠驱动机器人的动力学耦合奇异研究[J]. 航空学报, 2005, 26(2): 240-245.
[12] Becedas J, Payo I, Feliu V. Two-flexible-fingers gripper force feedback control system for its application as end effector on a 6-DOF manipulator[J]. IEEE Transactions on Robotics, 2011, 27(3): 599-615.
[13] Chu Z Y, Lei Y A. Parameters matching of an active-passive composite driver deployable manipulator for space probe[J]. Acta Aeronautica et Astronautica Sinica, 2014, 33(1): 268-278. (in Chinese) 楚中毅, 雷宜安.主被动复合驱动空间探测柔性伸杆机构的参数匹配研究[J]. 航空学报, 2014, 33(1): 268-278.
[14] Chu Z Y, Hu J, Lei Y A, et al. A self-adaptive gripper for on-orbit service: China, 201310326633.7[P]. 2013-11-20. (in Chinese) 楚中毅, 胡健, 雷宜安, 等. 一种空间在轨服务机器人的自适应指爪机构: 中国, 201310326633.7[P]. 2013-11-20.
[15] Charles C, Farhad J. Kinematic analysis and workspace determination of a 6 DOF CKCM robot end-effector[J]. Journal of Mechanical Working Technology, 1989, 20(5): 283-294.
[16] Petkovic D, Pavlovic N D, Cojbasic Z, et al. Adaptive neuro fuzzy estimation of underactuated robotic gripper contact forces[J]. Expert Systems with Application, 2013, 40(1): 281-286.
[17] Birglen L, Gosselin C M. Grasp-state plane analysis of two-phalanx underactuated fingers[J]. Mechanism and Machine Theory, 2006, 41(7): 807-822.
[18] Birglen L, Gosselin C M. On the force capability of underactuated fingers[C]//IEEE International Conference on Robotics and Automation, 2003: 1139-1145.
/
〈 | 〉 |