Material Engineering and Mechanical Manufacturing

Adjustment Optimal Trajectory Planning of Aircraft Component Based on Dynamics Model

  • HUANG Peng ,
  • WANG Qing ,
  • LI Jiangxiong ,
  • KE Yinglin ,
  • ZHANG Chunshan
Expand
  • 1. Department of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China;
    2. The Military Representative Office of PLA Residing in Xi'an Aircraft Company, Xi'an 710089, China

Received date: 2013-11-24

  Revised date: 2013-12-15

  Online published: 2014-02-21

Supported by

National Natural Science Foundation of China (51375442); National Key Technology Research and Development Program of China (2011BAF13B12)

Abstract

To improve the safety and reduce the impact on the sensitive direction in an aircraft component trajectory adjustment system, the trajectory of a large component is optimized by a dynamics model of the adjustment system. This model is derived by the Newton-Euler method, and takes into account the rod deformation, screw movement error and deformation in the NC locator. It can evaluate the kinematic characteristics of the component with different movement trajectories. In order to improve the efficiency and reduce the amount of computation in the optimization process, an adaptive kernel principal component analysis algorithm with optimal separability between classes is proposed in combination with pattern recognition methods to predict the performance of feasible trajectories to control the scope of the search. The effectiveness of the proposed method is verified by an example of an adjustment system. After evaluation of 150 feasible trajectories, the maximum translational velocity of the large component during the adjustment process is less than 20 mm/s, and the maximum angular velocity at the end of the adjustment process is less than 0.1 rad/s.

Cite this article

HUANG Peng , WANG Qing , LI Jiangxiong , KE Yinglin , ZHANG Chunshan . Adjustment Optimal Trajectory Planning of Aircraft Component Based on Dynamics Model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(9) : 2672 -2682 . DOI: 10.7527/S1000-6893.2013.0525

References

[1] Liu S L, Luo Z G, Tan G S, et al. 3D measurement and quality evaluation for complex aircraft assemblies[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(2): 409-418. (in Chinese) 刘胜兰, 罗志光, 谭高山, 等. 飞机复杂装配部件三维数字化综合测量与评估方法[J]. 航空学报, 2013, 34(2): 409-418.

[2] Zhu X S, Zheng L Y, Multiple-objective optimization algorithm based on key assembly characteristics to posture best fit for large component assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1726-1736. (in Chinese) 朱绪胜, 郑联语. 基于关键装配特性的大型零部件最佳装配位姿多目标优化算法[J]. 航空学报, 2012, 33(9): 1726-1736.

[3] Chen Z H, Du F Z, Tang X Q. Key measurement characteristics based inspection data modeling for aircraft assembly[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 2143-2152. (in Chinese) 陈哲涵, 杜福洲, 唐晓青. 基于关键测量特性的飞机装配检测数据建模研究[J]. 航空学报, 2012, 33(11): 2143-2152.

[4] Ata A A. Optimal trajectory planning of manipulators: a review[J]. Journal of Engineering Science and Technology, 2007, 2(1): 32-54.

[5] Zhu S Q, Liu S G, Wang X Y, et al. Time-optimal and jerk-continuous trajectory planning algorithm for manipulators[J]. Chinese Journal of Mechanical Engineering, 2010, 46(3): 47-52. (in Chinese) 朱世强, 刘松国, 王宣银, 等. 机械手时间最优脉动连续轨迹规划算法[J]. 机械工程学报, 2010, 46(3): 47-52.

[6] Zhang J Y, Liu T. Optimized path planning of mobile robot based on artificial potential field[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(Sup.): S183-S188. (in Chinese) 张建英, 刘暾. 基于人工势场法的移动机器人最优路径规划[J]. 航空学报, 2007, 28(增刊): S183-S188.

[7] Zhang B, Fang Q, Ke Y L. Optimal time trajectory planning method for a kind of posture aligning system of large rigid bodies[J]. Chinese Journal of Mechanical Engineering, 2008, 44(8): 248-252. (in Chinese) 张斌, 方强, 柯映林. 大型刚体调姿系统最优时间轨迹规划[J]. 机械工程学报, 2008, 44(8): 248-252.

[8] Xu H L, Xie X R, Zhuang J, et al. Global time-energy optimal planning of industrial robot trajectories[J]. Chinese Journal of Mechanical Engineering, 2010, 46(9): 19-25. (in Chinese) 徐海黎, 解祥荣, 庄健, 等. 工业机器人的最优时间与最优能量轨迹规划[J]. 机械工程学报, 2010, 46(9): 19-25.

[9] Xu X D, Huang P F, Meng Z J, et al. Space tethered robot optimal trajectory planning for medium approaching range based on velocity impulse[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(8): 1531-1539. (in Chinese) 徐秀栋, 黄攀峰, 孟中杰, 等. 基于速度增量的空间绳系机器人中距离逼近过程最优轨迹规划[J]. 航空学报, 2012, 33(8): 1531-1539.

[10] Zhu Y G, Huang X, Fang W, et al. Trajectory planning algorithm based on quaternion for 6-DOF aircraft wing automatic position and pose adjustment method[J]. Chinese Journal of Aeronautics, 2010, 23(6): 707-714.

[11] Xu Q, Li Y. Error analysis and optimal design of a class of translational parallel kinematic machine using particle swarm optimization[J]. Robotica, 2009, 27(1): 67-78.

[12] Ying Z, Zhang M, Wang Q, et al. Modeling and simulation of wear for alignment mechanism of large aircraft component[J]. Journal of Zhejiang University: Engineering Science, 2013, 47(2): 209-215. (in Chinese) 应征, 章明, 王青, 等. 飞机大部件调姿机构磨损预测模型的构建与仿真[J]. 浙江大学学报: 工学版, 2013, 47(2): 209-215.

[13] Yen P L, Lai C C. Dynamic modeling and control of a 3-DOF Cartesian parallel manipulator[J]. Mechatronics, 2009, 19(3): 390-398.

[14] Guo Z H, Chen W Y, Chen D C. Dynamics model on the 6-UPS parallel mechanism[J]. Chinese Journal of Mechanical Engineering, 2002, 38(11): 53-57. (in Chinese) 郭祖华, 陈五一, 陈鼎昌. 6-UPS型并联机构的刚体动力学模型[J]. 机械工程学报, 2002, 38(11): 53-57.

[15] Ling Z R, Hu R L, Chen G, et al. GB/T 17421.2-2000 Test code for machine tools——Part 2: Determination of accuracy and repeatability of positioning numerically controlled axes[S]. Beijing: Standards Press of China, 2000.(in Chinese) 凌泽润, 胡瑞琳, 陈高, 等. GB/T 17421.2-2000, 机床检验通则: 数控轴线的定位精度和重复定位精度的确定[S]. 北京: 中国标准出版社, 2000.

[16] Kaieda K, Abe S. KPCA-based training of a kernel fuzzy classifier with ellipsoidal regions[J]. International Journal of Approximate Reasoning, 2004, 37(3): 189-217.

[17] Teixeira A R, Tomé A M, Stadlthanner K, et al. KPCA denoising and the pre-image problem revisited[J]. Digital Signal Processing, 2008, 18(4): 568-580.

[18] Mika S, Schölkopf B, Smola A J, et al. Kernel PCA and de-noising in feature spaces[C]//Proceedings of the 1998 Conference on Advances in Neural Information Processing Systems. Cambridge: MIT Press, 1999: 536-542.

[19] THK. Product technical description of linear motion systems of THK A[M]. Tokyo: THK, 2006: 707.(in Chinese) THK. 直线运动系统产品技术说明 A[M]. 东京: THK, 2006: 707.

Outlines

/