ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic Optimization Design for After-body of Tail-mounted Engine Layout Considering Interference of Engines
Received date: 2013-09-24
Revised date: 2014-02-14
Online published: 2014-02-21
Aimed at reducing tail-mounted engine layout civil after-body drag with the interference of engines, we establish an aerodynamic optimization design system for the complex configurations. The design system is established with free formed deformation (FFD) parameterization method, radial basis functions (RBF) dynamic mesh method based on compact support function, computational fluid dynamics (CFD) technology, Kriging metamodeling and improved differential evolution algorithm. The optimization design system is used in after-body drag reduction design and then a decrease of 2.67% in the total drag is obtained. From the analysis of flow field, the change of the stream tube shape between after-body and nacelle reduces the unfavorable interference, eliminates the flow separation and weakens the shock strength, and then reduces the drag. The results show that the aerodynamic optimization design system constructed in this paper has good practicability in dealing with the tail-mounted engine layout civil after-body drag reduction problem.
YANG Tihao , BAI Junqiang , WANG Dan , CHEN Song , XU Jiakuan , CHEN Yuanyuan . Aerodynamic Optimization Design for After-body of Tail-mounted Engine Layout Considering Interference of Engines[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(7) : 1836 -1844 . DOI: 10.7527/S1000-6893.2013.0541
[1] He X L, Zhao G Q. Close-coupled problem of the engine and the wing about tail-mounted engine layout aircraft[J]. Civil Aircraft Design and Research, 2005(4): 30-35. (in Chinese) 何小亮, 赵国强. 尾吊布局飞机发动机与机翼的近距耦合问题[J].民用飞机设计与研究, 2005(4): 30-35.
[2] Epstein R J, Carbonaro M C, Caudron F. Experimental investigation of the flow field about an upswept afterbody[J]. Journal of Aircraft, 1994, 31(6): 1281-1290.
[3] Zhang J J, Zhang B Q, Wang Y Y, et al. A study of drag reduction of strakes for the upswept afterbody of a transport aircraft[J]. Mechanical Science and Technology, 2009(6): 807-810. (in Chinese) 张建军, 张彬乾, 王元元, 等. 运输机上翘后体侧鳍减阻技术研究[J]. 机械科学与技术, 2009(6): 807-810.
[4] Kong F M, Hua J. Effects of geometry parameters and flow parameters on drag coefficient of upswept afterbodies[J]. Journal of Beijing University of Aeronautics and Astronautics, 2003, 29(1): 39-42. (in Chinese) 孔繁美, 华俊. 几何和流动参数对上翘后体阻力系数的影响[J]. 北京航空航天大学学报, 2003, 29(1): 39-42.
[5] Zhou L, Qiao C J. Effects of afterbody parameters on aerodynamics[J]. Aircraft Engineering, 2003(3): 28-34. (in Chinese) 周林, 乔朝俊. 后体参数对气动力的影响[J]. 飞机工程, 2003(3): 28-34.
[6] Haar D, Brezillon J. Engine integration based on multi-disciplinary optimization technique[J]. CEAS Aeronautical Journal, 2012, 3(1): 17-24.
[7] Wang Z D. Design requirements and methods of engine nacelle installation position about airframe and engine integration design of tail-mounted engine layout civil aircraft[J]. Civil Aircraft Design and Research, 2004(2): 8-13. (in Chinese) 王志栋. 尾吊布局民机机体和发动机一体化设计对发动机短舱安装位置的设计要求和设计方法[J]. 民用飞机设计与研究, 2004(2): 8-13.
[8] Lin Y Z, Chen B, Xu X. Radial basis function interpolation in moving mesh technique[J]. Chinese Journal of Computational Physics, 2012, 29(2): 191-197. (in Chinese) 林言中, 陈兵, 徐旭. 径向基函数插值方法在动网格技术中的应用[J]. 计算物理, 2012, 29(2): 191-197.
[9] Zhao G Q. Differential evolution algorithm with greedy strategy and its applications. Harbin: Harbin Institute of Technology, 2007. (in Chinese) 赵光权. 基于贪婪策略的微分进化算法及其应用研究. 哈尔滨: 哈尔滨工业大学, 2007.
[10] Huang J T, Gao Z H, Bai J Q, et al. Laminar airfoil aerodynamic optimization design based on Delaunay graph mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1817-1826. (in Chinese) 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10): 1817-1826.
[11] Huang J T, Gao Z H, Bai J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 37-45. (in Chinese) 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1): 37-45.
[12] Smith R E. Transfinite interpolation (TFI) generation systems[M]. Handbook of Grid Generation. Cleveland: CRC Press, 1998.
[13] Su H J, Yang Y P, Wang Y J. Research on differential evolution algorithm: a survey[J]. Systems Engineering and Electronics, 2009, 30(9): 1793-1797. (in Chinese) 苏海军, 杨煜普, 王宇嘉. 微分进化算法的研究综述[J]. 系统工程与电子技术, 2009, 30(9): 1793-1797.
[14] Su H J. Research on quantum-inquired and tabu-based dierential evolution algorithms. Shanghai: Shanghai Jiao Tong University, 2010. (in Chinese) 苏海军. 量子衍生和禁忌微分进化算法研究. 上海: 上海交通大学, 2010.
[15] Zhu X X. Free curve and surface modeling techniques[M]. Beiging: Science Press, 2000: 236-238. (in Chinese) 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000: 236-238.
[16] Kleijnen J P C. Kriging metamodeling in simulation: a review[J]. European Journal of Operational Research, 2009, 192(3): 707-716.
[17] Fang K T, Ma C X. Orthogonal and uniform experimental design[M]. Beijing: Science Press, 2001: 20-100. (in Chinese) 方开泰, 马长兴. 正交与均匀试验设计[M]. 北京: 科学出版社, 2001: 20-100.
[18] Jiang G N, Fu J M. Aerodynamic design criteria of tail-mounted engine pylons[J]. Civil Aircraft Design and Research, 1995(3): 15-18. (in Chinese) 蒋光南, 傅建明. 尾吊型挂架气动设计的准则,流程和设计实例[J]. 民用飞机设计与研究, 1995(3): 15-18.
/
〈 | 〉 |