ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Inverse Design of the Fore-body Curved Shock Wave of the Hypersonic Planar Inlet
Received date: 2013-06-25
Revised date: 2014-01-06
Online published: 2014-01-17
Supported by
National Natural Science Foundation of China (11072264)
To achieve the compression capacity, compression efficiency, flow mass capture capacity, and geometric length of the hypersonic planar inlet controllable, a design method of the planar curved shock wave is proposed. The shock curve is specified with the B-Spline function in advance, and the domain of influence of the shock wave and the wall profile are solved by the rotational method of characteristics. With the inviscid CFD simulation of the concave shock wave, the present design method is validated. Three types of shock wave, including straight, concave and convex shock waves, are designed, and their performances are investigated. At on-design point, the variations of contraction ratio, total pressure recovery coefficient, pressure rise, and exit Mach number and flow angle with the governing angle of shock wave are illustrated. In addition, at off-design point, the variations of the total pressure recovery coefficient and flow mass coefficient with the angle of attack and Mach number are shown.
GUO Shanguang , WANG Zhenguo , ZHAO Yuxin , FAN Xiaoqiang . Inverse Design of the Fore-body Curved Shock Wave of the Hypersonic Planar Inlet[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(5) : 1246 -1256 . DOI: 10.7527/S1000-6893.2013.0510
[1] Oswatisch K. Pressure recovery in missiles with reaction propulsion at high supersonic speeds, NASA-TM-1140. Washington, D.C.: NASA, 1947.
[2] Mlder S, Spiro E J. Busemann inlet for hypersonic speeds[J]. Journal of Spacecraft and Rockets, 2006, 3(8): 1303-1304.
[3] van Wie D M, Mlder S. Applications of Busemann inlet designs for flight at hypersonic speeds, AlAA-1992-1210. Reston: AIAA, 1992.
[4] Billig F S, Kothari A P. Streamline tracing: technique for designing hypersonic vehicles[J]. Journal of Propulsion and Power, 2000, 16(3): 465-471.
[5] O'Brien T F. Viscous-optimized length-constrained axisymmetric geometries for streamline-tracing, AIAA-2008-2511. Reston: AIAA, 2008.
[6] Nan X J, Zhang K Y, Jin Z G, et al. Investigation on hypersonic inward turning inlets with controlled pressure gradient[J]. Journal of Aerospace Power, 2011, 26(3): 518-523. (in Chinese) 南向军, 张堃元, 金志光, 等. 压升规律可控的高超声速内收缩进气道设计[J]. 航空动力学报, 2011, 26(3): 518-523.
[7] Li Y Z, Zhang K Y, Nan X J. Design of hypersonic inward turning inlets base on concept controllable Mach number distribution[J]. Journal of Aerospace Power, 2012, 27(11): 2484-2491. (in Chinese) 李永洲, 张堃元, 南向军. 基于马赫数分布规律可控概念的高超声速内收缩进气道设计[J]. 航空动力学报, 2012, 27(11): 2484-2491.
[8] He X Z, Zhou Z, Ni H L. Integrated design method and performance analyses of osculating inward turning cone waverider forebody inlet[J]. Journal of Propulsion and Technology, 2012, 33(4): 510-515. (in Chinese) 贺旭照, 周正, 倪鸿礼. 密切内锥乘波前体进气道一体化设计和性能分析[J]. 推进技术, 2012, 33(4): 510-515.
[9] He X Z, Ni H L. Osculating curved cone (OCC) waverider: design methods and performance analysis[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(6): 1077-1082. (in Chinese) 贺旭照, 倪鸿礼. 密切曲面锥乘波体-设计方法与性能分析[J]. 力学学报, 2011, 43(6): 1077-1082.
[10] You Y C, Liang D W. Three-dimensional sections hypersonic inlet based on internal waverider[J]. Sci China Ser E-Tech Sci, 2009, 39(8): 1483-1494. (in Chinese) 尤延铖, 梁德旺. 基于内乘波概念的三维变截面高超声速进气道[J]. 中国科学 E辑: 技术科学, 2009, 39(8): 1483-1494.
[11] Xiao Y B, Yue L J, Gong P, et al. Investigation on a truncated streamline-traced hypersonic Busemann inlet, AIAA-2008-2634. Reston: AIAA, 2008.
[12] Sobieczky H, Dougherty F C, Jones K. Hypersonic waverider design from given shock waves//First International Waverider Symposium. College Park: University of Maryland, 1990: 17-19.
[13] Eggers T, Sobieczky H, Center K B. Design of advanced waveriders with high aerodynamic efficiency, AIAA-1993-5141. Reston: AIAA, 1993.
[14] Sobieczky H, Zores B, Wang Z, et al. High flow speed design using the theory of oculating cones and axisymmetric flows[J]. Chinese Journal of Aeronautics, 1999, 12(1): 1-7.
[15] Zucrow M J, Hoffman J D. Gas dynamics[M]. New Yorks: John Wiley & Sons, Inc., 1976: 191-192.
[16] Zhu X X. Plastic arts of free curves and curved surfaces[M]. Beijing: Science Press, 2000: 118-121. (in Chinese) 朱心雄. 自由曲线曲面造型技术[M]. 北京: 科学出版社, 2000: 118-121.
/
〈 | 〉 |