ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aerodynamic Optimization Design of Airfoil Using DFFD Technique
Received date: 2013-05-15
Revised date: 2013-11-25
Online published: 2013-12-04
Supported by
National Basic Research Program of China (2014CB744800)
This paper studies the directly manipulated free form deformation (DFFD) technique applied to airfoil geometry parameterization and aerodynamic shape optimization. By this method the direct manipulation and refined local shaping of an airfoil can be achieved, which overcomes the disadvantage of the traditional free form deformation (FFD) technique. The displacements of the FFD control points are computed by the least-square method using the specified displacements of some pilot points of the airfoil, so that the design variables are transformed from the FFD control points to the pilot points, which reduces the number of design variables when using a high order FFD control volume to achieve shape optimization. The case study shows that, compared with FFD, DFFD is of better physical intuition and geometry deforming capability. Finally, DFFD is applied to the aerodynamic shape optimization of RAE2822 airfoil together with a genetic algorithm, which shows that this approach is feasible and efficient, and it can be coupled with effective geometrical constraints.
CHEN Song , BAI Junqiang , SUN Zhiwei , WANG Dan . Aerodynamic Optimization Design of Airfoil Using DFFD Technique[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(3) : 695 -705 . DOI: 10.7527/S1000-6893.2013.0473
[1] Yamazaki W, Mouton S, Carrier G. Geometry parameterization and computational mesh deformation by physics-based direct manipulation approaches[J]. AIAA Journal, 2010, 48(8): 1817-1832.
[2] Hicks R, Henne P. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7): 407-412.
[3] Sobieczky H. Parametric airfoils and wings[J]. Notes on Numerical Fluid Mechnics, 1998, 68: 71-87.
[4] Samareh J. Survey of shape parameterization techniques for high-fidelity multidisciplinary shape optimization[J]. AIAA Journal, 2001, 39(5): 877-884.
[5] Kulfan B. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1): 142-158.
[6] Ceze M, Hayashi M, Volpe E. A study of the CST parameterization characteristics, AIAA-2009-3767[R]. Reston: AIAA, 2009.
[7] Lane A K,Marshall D D. A surface parameterization method for airfoil optimization and high lift 2D geometries utilizing the CST methodology, AIAA-2009-1461[R]. Reston: AIAA, 2009.
[8] Sederberg T, Parry S. Free-form deformation of solid geometric models[C]//Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, 1986, 86: 151-160.
[9] Duvigneau R, Chaigne B, Désidéri J A. Multi-level parameterization for shape optimization in aerodynamics and electromagnetics using particle swarm optimization, Research Report No.RR-6003[R]. 2006.
[10] Palacios F, Alonso J J, Colono M, et al. Adjoint-based method for supersonic aircraft design using equivalent area distribution, AIAA-2012-0269[R]. Reston: AIAA, 2012.
[11] Huang J T, Gao Z H, Bai J Q, et al. Laminar airfoil aerodynamic optimization design based on Delaunay graph mapping and FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1817-1826.(in Chinese) 黄江涛, 高正红, 白俊强, 等. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计[J]. 航空学报, 2012, 33(10): 1817-1826.
[12] Ma X Y, Wu W H, Fan Z L. Free deformation method of wing based on NURBS[J]. Journal of Sichuan University: Engineering Science Edition, 2010, 42 (S2): 195-197. (in Chinese) 马晓永, 吴文华, 范召林. 基于NURBS的机翼自由变形方法[J]. 四川大学学报, 2010, 42(增刊2): 195-197.
[13] Ma X Y, Fan Z L, Wu W H, et al. Aerodynamic shape optimization of wing based on FFD[C]//13th Chinese System Simulation Technology and Application Annual Conference, 2011: 599-602. (in Chinese) 马晓永, 范召林, 吴文华, 等. 基于FFD技术的机翼气动外形优化仿真[C]//第13届中国系统仿真技术及其应用学术年会, 2011: 599-602.
[14] Hu S M, Zhang H, Tai C L, et al. Direct manipulation of FFD: efficient explicit solutions and decomposable multiple point constraint[J]. The Visual Computer, 2001, 17(6): 370-379.
[15] Hsu W M, Hughes J F, Kaufman H. Direct manipulation of free-form deformations[J]. Computer Graphics, 1992, 26(2): 177-184.
[16] Menter F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598-1605.
[17] Roe P L. Approximate riemann solvers, parameter vectors, and difference schemes[J]. Jouranal of Computational Physics, 1981, 43(2): 357-372.
[18] Yoon S, Jameson A. Lower-upper-symmetric-Gauss-seidel method for the Euler and Navier-Stokes equations[J]. AIAA Journal, 1988, 26(9): 1025-1026.
[19] Ceze M, Fidkowski K J. Drag prediction using adaptive discontinuous finite elements, AIAA-2013-0051[R]. Res-ton: AIAA, 2013.
[20] Wang X P, Gao Z H. Aerodynamic optimization design of airfoil based on genetic algorithm[J]. Acta Aerodynamica Sinica, 2000, 18(3): 324-329. (in Chinese) 王晓鹏, 高正红. 基于遗传算法的翼型气动优化设计[J]. 空气动力学学报, 2000, 18(3): 324-329.
[21] Cheng B S. Aircraft design handbook episode 5: civil aircraft overall design[M]. Beijing: Aviation Industry Press, 2005. (in Chinese) 程不时. 飞机设计手册第5册: 民用飞机总体设计[M]. 北京: 航空工业出版社, 2005.
/
〈 |
|
〉 |