Fluid Mechanics and Flight Mechanics

Numerical Simulation of Nanosecond Pulsed Plasma Actuator for Cylindrical High-speed Flow Control

  • NI Fangyuan ,
  • SHI Zhiwei ,
  • DU Hai
Expand
  • College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2013-04-27

  Revised date: 2013-11-05

  Online published: 2013-11-26

Abstract

A computational study is performed for nanosecond-pulse dielectric barrier discharge (NS-DBD) plasma actuator using for cylindrical high-speed flow control. First, the flow field characteristic of a single NS-DBD plasma actuator in quiescent air is studied. The result shows that in the region of dielectric barrier discharge, there is a rapid injection of energy. At 5 μs after the discharge, a hot spot is formed at the downstream edge of the upper electrode. The maxima temperature of the hot spot reaches up to 900 K. The fast heating effect will result in a strong pressure perturbation and form an asymmetric perturbation wave spreading at the speed of sound. On this basis, the numerical simulation of NS-DBD plasma actuator disposed on the cylinder in the free stream Ma = 4.6 is presented in this paper. Studies have shown that as the compression wave travels upstream, it interacts with the bow-shock and momentarily increases the bow-shock standing distance and weakens the shock strength, thus resulting in a drag decrease by as much as 13%.

Cite this article

NI Fangyuan , SHI Zhiwei , DU Hai . Numerical Simulation of Nanosecond Pulsed Plasma Actuator for Cylindrical High-speed Flow Control[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(3) : 657 -665 . DOI: 10.7527/S1000-6893.2013.0451

References

[1] Corke T C, Enloe C L, Wilkinson S P. Dielectric barrier discharge plasma actuators for flow control[J]. Annual Review of Fluid Mechanica, 2010, 42: 505-529.

[2] Shi Z W, Fan B G. Experimental study on flow field characteristics of different plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9): 1583-1589. (in Chinese) 史志伟, 范本根. 不同结构等离子体激励器的流场特性实验研究[J]. 航空学报, 2011, 32(9): 1583-1589.

[3] Du H, Shi Z W, Geng X, et al. Experimental study of directional lateral aerodynamic moment control of micro air vehicle by plasma actuators[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1781-1790. (in Chinese) 杜海, 史志伟, 耿玺, 等. 等离子体激励器对微型飞行器横航向气动力矩控制的实验研究[J]. 航空学报, 2012, 33(10): 1781-1790.

[4] Roupassov D V, Nikipelov A A, Nudnova M M, et al. Flow separation control by plasma actuator with nanosecond pulse periodic discharge[J]. AIAA Journal, 2009, 47(1): 168-185.

[5] Li Y H, Wu Y, Liang H, et al. Theory of enhancing the inhibition of flow separation with plasma shock flow control[J]. Chinese Science Bulletin, 2010, 55(31): 3060-3068. (in Chinese) 李应红, 吴云, 梁华, 等. 提高抑制流动分离能力的等离子体冲击流动控制原理[J]. 科学通报, 2010, 55(31): 3060-3068.

[6] Bisek N J, Poggiey J, Nishihara M, et al. Computational and experimental analysis of Mach 5 air flow over a cylinder with a nanosecond pulse discharge, AIAA-2012-186[R]. Reston: AIAA, 2012.

[7] Adamovich I, Little J, Nishihara M, et al. Nanosecond pulse surface discharges for high-speed flow control, AIAA-2012-3137[R]. Reston: AIAA, 2012.

[8] Peschke P, Goekcey S, Hollensteinz C, et al. Interac-tion between nanosecond pulse DBD actuators and transonic flow, AIAA-2011-3734[R]. Reston: AIAA, 2011.

[9] Unfer T, Boeuf J P. Modelling of a nanosecond surface discharge actutator[J]. Journal of Physics D: Applied Physics, 2009, 42(19): 194017.

[10] Che X K, Shao T, Nie W S, et al. Numerical simulation on a nanosecond-pulse surface dielectric barrier discharge actuator in near space[J]. Journal of Physics D: Applied Physics, 2012, 45(14): 145201.

[11] Dawson R, Little J. Characterization of nano-second pulse driven dielectric barrier discharge plasma actuators for aerodynamic flow control, AIAA-2012-3236[R]. Reston: AIAA, 2012.

[12] Kossyi I A, Kostinsky A Y, Matveyev A A, et al. Kinetic scheme of the nonequilibrium discharge in nitrogen-oxygen mixtures[J]. Plasma Sources Science and Technology, 1992, 1(3): 207-220.

[13] Poggie J, Bisek N J. Numerical simulation of nanosecond-pulse electrical discharges, AIAA-2012-1025[R]. Reston: AIAA, 2012.

[14] Breden D, Raja L. Simulations of nanosecond pulse plasmas in supersonic flows for combustion applications[J]. AIAA Journal, 2012, 50(3): 647-658.

[15] Little J, Takashima K, Nishihara M, et al. Separation control with nanosecond-pulse-driven dielectric barrier discharge plasma actuators[J]. AIAA Journal, 2012, 50(2): 350-365.

Outlines

/