Electronics and Control

Decoupling Control Algorithm of Helicopter with Input Saturation Based on Information Fusion

  • HU Zhou ,
  • WANG Zhisheng ,
  • WANG Congqing
Expand
  • College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2013-07-31

  Revised date: 2013-11-05

  Online published: 2013-11-11

Supported by

National Natural Science Foundation of China (60874037)

Abstract

For the decoupling control of helicopters with input saturation, an improved information fusion decoupling control algorithm is proposed. By fusing the soft constraints information of the desired output and the control energy of the main channel and the relevant coupling channels, with the hard constraints information supplied by the system state equation and the output equation, the optimal estimation of the decoupling control rule under the quadratic performance index can be obtained, and the dynamic characteristics and decoupling performance of the inner control loop of the helicopters can be improved. By adaptively adjusting the soft constraints information of the control energy, the control variables satisfied the limitation requirements of input saturation, and avoid the decoupling performance deterioration and the driver overload caused by input saturation. The proposed information fusion control algorithm based on discrete model of the controlled system, and could be easily applied to engineering practice. The simulation results demonstrate the effectiveness of the proposed method.

Cite this article

HU Zhou , WANG Zhisheng , WANG Congqing . Decoupling Control Algorithm of Helicopter with Input Saturation Based on Information Fusion[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(5) : 1394 -1403 . DOI: 10.7527/S1000-6893.2013.0455

References

[1] Zheng F Y, Yang Y D. Flight control system design of explicit model-following for helicopter based on control distribution matrix decouple[J]. Journal of Naval Aeronautical Engineering Institute, 2007, 22(1): 119-124. (in Chinese) 郑峰婴, 杨一栋. 控制阵解耦的直升机显模型跟踪飞控系统设计[J]. 海军航空工程学院学报, 2007, 22(1): 119-124.

[2] Wen P, Lu T W. Decoupling control of a twin rotor MIMO system using robust deadbeat control technique[J]. IET Control Theory & Applications, 2008, 2(11): 999-1007.

[3] Ahmed Q, Bhatti A I, Iqbal S. Robust decoupling control design for twin rotor system using Hadamard weights//IEEE Conference on Control Applications, (CCA) & Intelligent Control,(ISIC), 2009: 1009-1014.

[4] Wang H Q, Wang D B, Mian A A, et al. Robust tracking decoupled flight control of an unmanned helicopter[J]. Mechanical Science and Technology for Aerospace Engineering, 2009, 28(4): 536-541. (in Chinese) 王宏强, 王道波, Mian Ashfaq Ahmad,等. 无人直升机鲁棒跟踪解耦飞行控制研究[J]. 机械科学与技术, 2009, 28(4): 536-541.

[5] Tadayoni S A, Gholami B, Demirli K. Vision-based fuzzy 2D motion control of a model helicopter//Fuzzy Information Processing Society, Annual Meeting of the North American, 2006: 714-719.

[6] Zeng L L, Wang D B, Fan C X. An unmanned helicopter decoupling control based on the fuzzy PID control method[J]. Journal of Applied Sciences, 2004, 22(4): 498-502. (in Chinese) 曾丽兰, 王道波, 樊春霞. 基于模糊 PID的无人直升机解耦控制研究[J]. 应用科学学报, 2004, 22(4): 498-502.

[7] Xu G F, Chen M. Decoupling analysis between yaw and collective pitch controls of coaxial helicopter using free wake arithmetic[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(2): 249-252. (in Chinese) 徐冠峰, 陈铭. 基于自由尾迹的共轴直升机航向/总距解耦分析[J]. 北京航空航天大学学报, 2011, 37(2): 249-252.

[8] Jiang H X, Xu J F, Gao Z, et al. Hover/Landing control for the novel compound unmanned aerial helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(B5): 46-54. (in Chinese) 蒋鸿翔, 徐锦法, 高正,等. 新型复合式无人直升机悬停/着陆控制[J]. 航空学报, 2008, 29(B5): 46-54.

[9] Yuan Z H, Zhang W, Mu X. Adaptive optimal decoupling control in helicopter rotor concordant loading system[J]. China Mechanical Engineering, 2007, 18(22): 2691-2696. (in Chinese) 袁朝辉, 张伟, 穆旭. 直升机旋翼协调加载自适应最优解耦控制[J]. 中国机械工程, 2007, 18(22): 2691-2696.

[10] Liu P, Wang Q, Meng Z J, et al. Unmanned helicopter robust controller design based on aircraft flying qualities evaluation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1587-1597. (in Chinese) 刘鹏, 王强, 蒙志君,等. 基于飞行品质评估的无人直升机鲁棒控制器设计[J]. 航空学报, 2012, 33(9): 1587-1597.

[11] Yang C D, Liu W H. Robust H decoupling hover control of uncertain nonlinear helicopter, AIAA-2003-5489. Reston: AIAA, 2003.

[12] Yang C D, Liu W H, Chang P W, et al. Decoupling control for hovering flight vehicle with parameter uncertainties, AIAA-2006-6091. Reston: AIAA, 2006.

[13] Zhen Z Y, Wang Z S, Wang D B. Optimal preview tracking control based on information fusion in error system[J]. Control Theory & Applications, 2009, 26(4): 425-428. (in Chinese) 甄子洋, 王志胜, 王道波. 基于误差系统的信息融合最优预见跟踪控制[J]. 控制理论与应用, 2009, 26(4): 425-428.

[14] Zhen Z Y, Wang Z S, Wang D B. Information fusion estimation based preview control for discrete linear system[J]. Acta Automatica Sinica, 2010, 36(2): 347-352. (in Chinese) 甄子洋, 王志胜, 王道波. 基于信息融合估计的离散线性系统预见控制[J]. 自动化学报, 2010, 36(2): 347-352.

[15] Yang Y D. Helicopter flight control[M]. 2nd ed. Beijing: National Defense Industry Press, 2011: 133-134. (in Chinese) 杨一栋. 直升机飞行控制[M]. 2版. 北京: 国防工业出版社, 2011: 133-134.

[16] Wang Z S, Jiang B, Zhen Z Y. Fusion estimation and fusion control[M]. 2nd ed. Beijing: Science Press, 2009: 57-58. (in Chinese) 王志胜, 姜斌, 甄子洋. 融合估计与融合控制[M]. 2版. 北京: 科学出版社, 2009: 57-58.

Outlines

/