ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Review of the Control of Low Dynamic Vehicles in Near Space
Received date: 2013-09-03
Revised date: 2013-10-17
Online published: 2013-10-30
Supported by
Aerospace Science and Technology Innovation Fund (N13XW0001)
The latest development and tendency of the flight control systems for low dynamic vehicles in the near space is analyzed and summarized in view of the new problems in the research of the control technology. Firstly, based on the characteristics of the vehicles, including near-space airships and stratospheric balloons in different flight environments of stratosphere and troposphere, the basic problems and key technologies of the low dynamic vehicles are generalized. Secondly, special attention is paid to the following areas in flight control system design for low dynamic vehicles: the servo control system design, mathematical models, attitude control, station-keeping control, velocity control, trajectory optimization, path tracking control, ascent control, descent control, pressure control, and control strategies in applying all kinds of control approaches. Finally, some key issues are proposed which deserve more attention of the researchers for their solution on the basis of the progress of existing research in relevant fields.
GUO Jianguo , ZHOU Jun . Review of the Control of Low Dynamic Vehicles in Near Space[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(2) : 320 -331 . DOI: 10.7527/S1000-6893.2013.0435
[1] Griffin D K, Perrotta G. Feasibility study of the geostationary stratospheric lighter-than-air platform, AIAA-2000-2305[R]. Reston: AIAA, 2000.
[2] Masahiko O. Design and applications of a stratospheric long endurance LTA platform, AIAA-2001-5266[R]. Reston: AIAA, 2001.
[3] Nayler A W L. Airship activity and development world-wide-2003, AIAA-2003-6727[R]. Reston: AIAA, 2003.
[4] Colozza A, Dolce J. Initial feasibility assessment of a high altitude long endurance airship, NASA CR-212724[R]. Washington, D.C.: NASA, 2003.
[5] Khoury G A, Gillett J D. Airship technology[M]. London: Cambridge University Press, 1999: 20-30.
[6] Wang H H, Yuan Z H, Wu J. Analysis of the motion control methods for stratospheric balloon-borne gondola platform[C]//Proceedings of the 4th International Symposium on Instrumentation Science and Technology. Harbin: IOP, 2006: 1295-1300.
[7] Yang J, Lv D R. Progresses in the study of stratosphere-troposhere exchange[J]. Advances in Earth Sciences, 2003, 18(3): 380-385. (in Chinese) 杨健, 吕达仁. 平流层—对流层交换研究进展[J]. 地球科学进展, 2003, 18(3): 380-385.
[8] Lutz T, Funk P, Jakobi A, et al. Considerations on laminar flow for a stratospheric airship platform[C]//Proceedings of the 3rd International Airship Convention and Exhibition. New York: IEEE, 2000: 1-15.
[9] Li Z B, Wu L, Zhang J R, et al. Review of dynamic and control of stratospheric airships[J]. Advances in Mechanics, 2012, 42(4): 483-493. (in Chinese) 李智斌, 吴雷, 张景瑞, 等.平流层飞艇动力学与控制研究进展[J]. 力学进展, 2012, 42(4): 483-493.
[10] Dolce J L, Collozza A. High-altitude, long-endurance airships for coastal surveillance, NASA CR-212724[R]. Washington, D.C.: NASA, 2005.
[11] Knaupp W, Mundschau E. Photovolatic-hydrogen engergy systems for stratopheric platforms[C]//Proceedings of the 3rd World Conference on Pholovoltaic Energy Conversion. New York: IEEE, 2003: 2143-2147.
[12] Wu X T, Moog C H, Marquez-Martinez L A, et al. Full model of a buoyancy-driven airship and its control in the vertical plane[J]. Aerospace Science and Technology, 2013, 26(1): 138-152.
[13] Liesk T, Nahon M, Boulet B. Design and experimental validation of a nonlinear low-level controller for an unmanned fin-less airship[J]. IEEE Transactions on Control Systems Technology, 2013, 21(1): 149-161.
[14] Mazhar H, Nahon M, Liesk T. Validation of a dynamics model and controller for an unmanned finless airship, AIAA-2013-1300[R]. Reston: AIAA, 2013.
[15] Guo J G, Zhou J. Compound control system design of stratospheric airship based on aircrew systems[J]. Journal of Astronautics, 2009, 30(1): 225-228. (in Chinese) 郭建国, 周军.基于螺旋桨系统的平流层飞艇复合控制系统[J]. 宇航学报, 2009, 30(1): 225-228.
[16] Zhang M H, Duan D P, Chen L.Turning mechanism and composite control of stratospheric airships[J]. Journal of Zhejiang Univerisity-SCIENCE C, 2012, 13(11): 859-865.
[17] Chen L, Zhou G, Yan X J, et al. Composite control strategy of stratospheric airships with moving masses[J]. Journal of Aircraft, 2012, 49(3): 794-801.
[18] Harada K, Eguchi K, Sano M, et al. Experimental study of thermal modeling for stratosphereic plantform airship, AIAA-2003-6833[R]. Reston: AIAA, 2003.
[19] Gomes V B, Ramos J G. Airship dynamic modeling for autonomous operation[C]//Proceedings of the 1998 IEEE International Conference on Robotics and Automation. New York: IEEE, 1998: 3462-3467.
[20] Ouyang J, Qu W D, Xi Y G. Stratospheric verifying airship modeling and analysis[J]. Journal of Shanghai Jiongtong University, 2003, 37(6): 956-960. (in Chinese) 欧阳晋, 屈卫东, 席裕庚. 平流层验证飞艇的建模与分析[J]. 上海交通大学学报, 2003, 37(6): 956-960.
[21] Li Y W, Nahon M. Modeling and simulation of airship dynamics[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(6): 1691-1700.
[22] Liu Y, Hu Y M, Wu Y L. Stability and control analysis based on airship dynamic modeling[C]//Proceedings of 2007 IEEE International Conference on Automation and Logistics. New York: IEEE, 2007: 2744-2748.
[23] Schmidt D K. Modeling and near-space stationkeeping control of a large high-altitude airship[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 540-547.
[24] Chen L, An J W, Yang C W. Exploring some key problems in modeling a strtsperic airship[J]. Journal of Northwestern Polytechnical University, 2007, 25(3): 383-387. (in Chinese) 陈澜, 安锦文, 杨常伟. 平流层飞艇建模关键问题研究[J]. 西北工业大学学报, 2007, 25(3): 383-387.
[25] Li Y W, Nahon M, Sharf I. Airship dynamics modeling: a literature review[J]. Progress in Aerospace Sciences, 2011, 47(3): 217-239.
[26] Yu L, Wu Y L. Dynamics research of an autonomous airship[J]. Procedia Engineering, 2011, 15: 817-822.
[27] Fang X L, Liu X X, Wang F, et al. Research on modeling technology for a high altitude airship[J]. Procedia Engineering, 2011, 15: 747-751.
[28] Kulczycki E A, Koehler S M, Elfes A, et al. Development of an analytical parameterized linear lateral dynamic model for an aerobot airship, AIAA-2011-6292[R]. Reston: AIAA, 2011.
[29] Azinheira J R, Moutinho A, de Paiva E C. Airship hover stabilization using a backstepping control approach[J].Journal of Guidance, Control, and Dynamics, 2006, 29(4): 903-914.
[30] Liesk T. Integral backstepping control of an unmanned, unstable, fin-less airship, AIAA-2010-7735[R]. Reston: AIAA, 2010.
[31] Azouz N, Bestaoui, Y, Lemaitre O. Dynamic analysis of airship with small deformations[C]//Proceedings of the 3rd International Workshop on Robot Motion and Control. New York: IEEE, 2002: 209-215.
[32] Cai Z L, Qu W D, Xi Y G. Dynamic modeling for airship equipped with ballonets and ballast[J]. Applied Mathematics and Mechanics, 2005, 26(8): 979-987. (in Chinese) 蔡自立, 屈卫东, 席裕庚. 带有升降气囊与压块的飞艇动力学建模[J]. 应用数学和力学, 2005, 26(8): 979-987.
[33] Cai Z L, Qu W D, Xi Y G. Dynamic modeling for airship equipped with ballonets and ballast[J]. Applied Mathematics and Mechanics, 2005, 26(8): 1072-1082.
[34] Shi H, Song B Y, Zhou L, et al. Effect of the control style of a stratospheric airship on its floating performance[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(5): 800-805. (in Chinese) 施红, 宋保银, 周雷, 等.平流层飞艇的控制模式对其定点特性的影响[J]. 航空学报, 2009, 30(5): 800-805.
[35] Chen X J, Qi H, Wang X P, et al. Modeling and simulation of pressure conrol for stratospheric platform airship[C]//Proceedings of the 6th World Congress on Intelligent Control and Automation. New York: IEEE, 2006: 6208-6212.
[36] Ouyang J. Research on modeling and control of an unmanned airship[D]. Shanghai: Department of Automation, Shanghai Jiongtong University, 2003. (in Chinese) 欧阳晋. 空中无人飞艇的建模与控制方法研究[D]. 上海: 上海交通大学自动化系, 2003.
[37] Fang C G. The study on dynamics modeling and control for stratospheric telecommunication platform-unmanned airship[D]. Shenyang: School of Information Science and Engineering, Northeastern University, 2003. (in Chinese) 方存光. 平流层信息平台——自主飞艇动力学建模与控制的研究[D]. 沈阳: 东北大学信息科学与工程学院, 2003.
[38] de Paiva E C, Bueno S S, Bergerman M. A robust pitch attitude controller for AURORA's semi-autonomous robotic airship, AIAA-1999-3907[R]. Reston: AIAA, 1999.
[39] Mueller J B, Paluszek M A, Zhao Y. Development of an aerodynamic model and control law design for a high altitude airship, AIAA-2004-6479[R]. Reston: AIAA, 2004.
[40] Schmidt D K. Dynamic modeling, and station-keeping guidance of a large high-altitude near-space airship, AIAA-2006-6781[R]. Reston: AIAA, 2006.
[41] Miller C J, Sullivan J, McDonald S. High altitude airship simulation control and low altitude flight demonstration, AIAA-2007-2766[R]. Reston: AIAA, 2007.
[42] Azinheira J R, Rives P, Carvalho R H, et al. Visual servo control for the hovering of an outdoor robotic airship[C]//Proceeding of the 2002 IEEE International Conference on Robotics and Automation. New York: IEEE, 2002: 2787-2792.
[43] Kulczycki E A, Joshi S S, Hess R A, et al. Towards controller design for autonomous airships using SLC and LQR methods, AIAA-2006-6778[R]. Reston: AIAA, 2006.
[44] Trevino R, Frye M, Franz J A, et al. Robust receding horizon control of a tri-turbofan airship[C]//Proceedings of IEEE International Conference on Control and Automation. New York: IEEE, 2007: 671-676.
[45] Kaempf B G, Well K H. Attitude control system for a remotely-controlled airship, AIAA-1995-1622[R]. Reston: AIAA, 1995.
[46] Lee S J, Kim D M, Bang H C. Feedback linearization controller for semistation keeping of the unmanned airship, AIAA-2005-7343[R]. Reston: AIAA, 2005.
[47] Park C, Lee H, Tahk M, et al. Airship control using neural network augmented model inversion[C]//Proceedings of IEEE Conference on Control Applications. New York: IEEE, 2003: 558-563.
[48] Kusagaya T, Fujii H A, Kojima H, et al. Nonlinear optimal control applied to longitudinal motion of an airship, AIAA-2003-6801[R]. Reston: AIAA, 2003.
[49] Wang X L, Shan X X. Airship attitude tracking system[J]. Applied Mathematics and Mechanics, 2006, 27(7): 805-811. (in Chinese) 王晓亮, 单雪雄.飞艇姿态跟踪系统的研究[J]. 应用数学和力学, 2006, 27 (7): 805-811.
[50] Falahpour M, Moradi H, Refai H H, et al. Performance comparison of classic and fuzzy logic controller for communication airship[C]//IEEE/AIAA 28th Digital Avionics Systems Conference. New York: IEEE, 2009: 4.A.6-1-4.A.6-8.
[51] de Paiva E C, Benjovengo F, bueno S S, et al. Nonlinear control approaches for an autonomous unmanned robotic airship, AIAA-2007-7782[R]. Reston: AIAA, 2007.
[52] Benjovengo F P, de Paiva E C, Bueno S S, et al. Sliding mode control approaches for an autonomous unmanned airship, AIAA-2009-2869[R]. Reston: AIAA, 2009.
[53] Yang Y N, Wu J, Zheng W. Adaptive fuzzy sliding mode control for robotic airship with model uncertainty and external disturbance[J]. Journal of Systems Engineering and Electronics, 2012, 23(2): 250-255.
[54] Yang Y N, Wu J, Zheng W. Concept design, modeling and station-keeping attitude control of an earth observation platform[J]. Chinese Journal of Mechanical Engineering, 2012, 25(6): 1245-1254.
[55] Yang Y N, Wu J, Zheng W. Design, modeling and control for astratospheric telecommunication platform[J]. Acta Astronautica, 2012, 80(6): 181-189.
[56] Beji L, Abichou A, Bestaoui Y. Stabilization of a nonlinear underactuated autonomous airship a combined averaging and backstepping approach[C]//Proceedings of the 3rd International Workshop on Robot Motion and Control. New York: IEEE, 2002: 223-229.
[57] Park C S, Lee H, Tahk M J, et al. Airship control using neural network augmented model inversion[C]//Proceedings of 2003 IEEE Conference on Control Applications. New York: IEEE, 2003: 558-563.
[58] Moutinho A, Azinheira J R. Stability and robustness analysis of the AURORA airship control system using dynamic inversion[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. New York: IEEE, 2005: 2265-2270.
[59] Azinheira J R, Moutinho A, de Paiva E C. Airship hover stabilization using a backstepping control approach[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(4): 903-914.
[60] Hygounenc E, Soueres P. Automatic airship control involving backstepping techniques[C]//Proceedings of 2002 IEEE International Conference on Systems, Man and Cybernetics. New York: IEEE, 2002: 1-5.
[61] Cai Z L, Qu W D, Xi Y G, et al. Stabilization of an underactuated bottom-heavy airship via interconnection and damping assignment[J]. International Jornal of Robust Nonlinear Control, 2007, 17: 1690-1715.
[62] Wu X T, Moog C H, Hu Y M. Singular perturbation approach to moving mass control of buoyancy-driven airship in 3-D space[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2011, 28(4): 343-352.
[63] Hong C H, Choi K C, Kim B S. Applications of adaptive neural network control to an unmanned airship[J]. International Journal of Control, Automation, and Systems, 2009, 7(6): 911-917.
[64] Yang Y N, Wu J, Zheng W. Station-keeping control for a stratospheric airship platform via fuzzy adaptive backstepping approach[J]. Advances in Space Research, 2013, 51(7): 1157-1167.
[65] Potdaar T S, Sinha P, Pant R S. Controller design for an outdoor autonomous airship, AIAA-2013-1301[R]. Reston: AIAA, 2013.
[66] Bestaoui Y. Characterization of non trim trajectories of an autonomous underactuated airship in a low velocity flight[C]//Proceedings of the 2005 IEEE International Conference on Robotics and Automation. New York: IEEE, 2005: 2259-2264.
[67] Repoulias F, Papadopoulos E. Dynamically feasible trajectory and open-loop control design for unmanned airships[C]//Proceedings of Mediterranean Conference on Control and Automation. New York: IEEE, 2007: 1-6.
[68] D'Ambrosio D, de Matteis G, de Socio L M. Controlled ascent of an airship for high altitudes, AIAA-1995-3447[R]. Reston: AIAA, 1995.
[69] Zhao Y Y, Garrard W, Mueller J. Benefit of trajectory optimization in airship flights, AIAA-2004-6527[R]. Reston: AIAA, 2004.
[70] Mueller J B, Zhao Y Y, Garrard W L. Optimal ascent trajectories for stratospheric airships using wind energy[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(4): 1232-1245.
[71] Jia R T, Frye M T, Qian C J. Control of an airship using particle swarm optimization and neural network[C]//Proceedings of the IEEE International Conference on Systems, Man and Cybernetics. New York: IEEE, 2009: 1809-1814.
[72] Ramos J G, de Paiva E C, Azinheira J R, et al. Autonomous flight experiment with a robotic unmanned airship[C]//Proceedings of the International Conference on Robotics and Automation. New York: IEEE, 2001: 4152-4157.
[73] Guo J G, Zhou J. Altitude control system of autonomous airship based on fuzzy logic[C]//Proceedings of the 2nd International Symposium on Systems and Control in Aerospace and Astronautics. New York: IEEE, 2008: 1-5.
[74] Guo J G. Velocity control system of autonomous airship based on adaptive dynamic inversion[J]. Journal of Astronautics, 2008, 29(5): 1505-1508. (in Chinese) 郭建国. 基于自适应动态逆的自主飞艇速度控制系统设计[J]. 宇航学报, 2008, 29(5): 1505-1508.
[75] Silveira G F, Carvalho J R H, Rives P, et al. Optimal visual servoed guidance of outdoor autonomous robotic airships[C]//Proceedings of the 2002 American Control Conference. New York: IEEE, 2002: 779-784.
[76] Zhang Y, Qu W D, Xi Y G, et al. Adaptive stabilization and trajectory tracking of airship with neutral buoyancy[J]. Acta Automatica Sinica, 2008, 34(11): 1437-1440.
[77] Zhang Y, Qu W D, Xi Y G, et al. Stabilization and trajectory tracking of autonomous airship's planar motion[J]. Journal of Systems Engineering and Electronics, 2008, 19(5): 974-981.
[78] Luo J, Xie S R, Rao J J, et al. Robotic airship mission path tracking control based on human operator's skill[C]//Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation. New York: IEEE, 2005: 537-540.
[79] de Paiva E C, Benjovengo F, Bueno S S. Sliding mode control for the path following of an unmanned airship[C]//Proceedings of 6th IFAC Symposium on Intelligent Autonomous Vehicles, 2007: 221-227.
[80] Beji L, Abichou A. Tracking control of trim trajectories of a blimp for ascent and descent flight manieuvres[J]. International Journal of Control, 2005, 78(10): 706-719.
[81] Lee S, Lee H, Won D, et al. Back-stepping approach of trajectory tracking control for the mid-altitude unmanned airship, AIAA-2007-6319[R]. Reston: AIAA, 2007.
[82] Repoulias F, Papadopoulos E. Robotic airship trajectory tracking control using a backstepping methodology[C]//Proceedings of IEEE International Conference on Robotics and Automation. New York: IEEE, 2008: 188-193.
[83] Azinheira J R, Moutinho A, de Paiva E C. A backstepping controller for path-tracking of an underactuated autonomous airship[J]. International Journal of Robust Nonlinear Control, 2009, 19(4): 418-441.
[84] Acosta D M, Joshi S S. Adptive nonlinear dynamic inversion control of an autonomous airship for the exploration of Titan, AIAA-2007-6502[R]. Reston: AIAA, 2007.
[85] Kahale E, Garcia P C, Bestaoui Y. Autonomous path tracking of a kinematic airship in presence of unknown gust[J]. Journal of Intelligent & Robot Systems, 2013, 69(4): 431-446.
[86] Guo J G, Jun Z. Lateral path controller design for autonomous airship[C]//Proceedings of the 2nd International Conference on Intelligent Human-Machine Systems and Cybernetics. New York: IEEE, 2010: 276-279.
[87] Elfes A, Bueno S S, Ramos J J G, et al. Modeling, control and perception for an autonomous robotic airships[J]. Lecture Notes in Computer Science, 2002, 2238: 216-244.
[88] Wu Y M, Zhu M, Zuo Z Y, et al. Trajectory tracking of a high altitude unmanned airship based on adaptive feedback linearization[C]//Proceedings of International Conference on Mechatronic Science, Electric Engineering and Computer. New York: IEEE, 2011: 2257-2261.
[89] Zheng Z W, Huo W, Wu Z. Trajectory tracking control for underactuated stratospheric airship[J]. Advances in Space Research, 2012, 50(7): 906-917.
[90] Zheng Z W, Huo W, Wu Z. Autonomous airship path following control: theory and experiments[J]. Control Engineering Practice, 2013, 21(6): 769-788.
/
〈 | 〉 |