Material Engineering and Mechanical Manufacturing

Control Technology of Composite Tape Winding Pressure

  • HE Xiaodong ,
  • SHI Yaoyao ,
  • ZHAO Pengbing
Expand
  • School of Mechatronics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2013-09-10

  Revised date: 2013-10-13

  Online published: 2013-10-21

Supported by

National Natural Science Foundation of China (51375394)

Abstract

Pressure fluctuation will affect the density and uniformity of the winding products during a composite tape winding process, which also results in their inconsistency in interface strength and fiber volume fraction. The roundness error and installation error in the mandrel will lead to pressure fluctuation, and the gas compressibility, proportion valve dead-time effect, valve nonlinear flow, cylinder friction, measurement noise will all create nonlinear interference to winding pressure control. In view of these factors, a grey-prediction-based adaptive fuzzy PID controller is proposed. The pressure signal trend will be reflected accurately via the grey prediction of winding pressure, which provides a reliable basis for the inference of fuzzy PID control. Simultaneously, the predictive control step and the scaling factor of a self-tuning algorithm are adjusted by two other fuzzy controllers separately. Simulation analysis and experimental results show that by using the grey-prediction-based adaptive fuzzy PID control, the winding pressure overshoot decreases by 62%, and steady-state error decreases by 80%. Compared with the traditional PID control, the stability of the composite tape winding pressure control system is effectively improved by the prediction-based adaptive fuzzy PID controller.

Cite this article

HE Xiaodong , SHI Yaoyao , ZHAO Pengbing . Control Technology of Composite Tape Winding Pressure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(3) : 868 -877 . DOI: 10.7527/S1000-6893.2013.0417

References

[1] Shen G L. Mechanics of composite materials[M]. Beijing: Tsinghua University Press, 2006: 15-26. (in Chinese) 沈观林. 复合材料力学[M]. 北京: 清华大学出版社, 2006: 15-26.

[2] Gutowski T G. Advanced composites manufacturing [M]. Li H Y, translated. Beijing: Chemical Industry Press, 2004: 21-30. (in Chinese) T. G. 古托夫斯基. 先进复合材料制造技术 [M]. 李宏运, 译. 北京: 化学工业出版社, 2004: 21-30.

[3] Yi X S, Du S Y, Zhang L T. Composite handbook[M]. Beijing: Chemical Industry Press, 2009: 387-388. (in Chinese) 益小苏, 杜善义, 张立同. 复合材料手册[M]. 北京: 化学工业出版社, 2009: 387-388.

[4] Littlefield A, Hyland E, Andalora A, et al. Carbon fiber/thermoplastic overwrapped gun tube[J]. Materials and Manufacturing Processes, 2006, 21(6): 573-578.

[5] Shi Y Y, Tang H, Yu Q. Key technology of the NC tape winding machine[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 233-239. (in Chinese) 史耀耀, 唐虹, 余强.数控布带缠绕机关键技术[J]. 航空学报, 2008, 29(1): 233-239.

[6] Rudd C D, Turner M R, Long A C, et al. Tow placement studies for liquid composite moulding[J]. Composites Part A: Applied Science and Manufacturing, 1999, 30(9): 1105-1121.

[7] Hassan N, Thompson J E, Batra R C, et al. A heat transfer analysis of the fiber placement composite manufacturing process[J]. Journal of Reinforced Plastics and Composites, 2005, 24(8): 869-888.

[8] Zhang J B, Wen L W, Xiao J, et al. Processing pressure control technique for automatic tape laying[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10): 1973-1977. (in Chinese) 张建宝, 文立伟, 肖军, 等. 自动铺带成型压力控制技术[J]. 航空学报, 2009, 30(10): 1973-1977.

[9] Shi Y, Tang H, Yu Q. Development of a NC tape winding machine[M]//Yan X, Ion W, Eynard B. Global design to gain a competitive edge. London: Springer London, 2008: 753-762.

[10] Edmond R, Yildirim H. A high performance pneumatic force actuator system: part Ⅱ-nonlinear controller design[J]. Journal of Dynamic Systems Measurement and Control, 2000, 122(3): 426-434.

[11] Chen Y, Zhang J F, Yang C J, et al. Design and hybrid control of the pneumatic force-feedback systems for Arm-Exoskeleton by using on/off valve[J]. Mechatronics, 2007, 17(6): 325-335.

[12] Lu B, Tao G L, Liu H, et al. Modeling and constant pressure control of pneumatic suspension system for zero-gravity simulation[J]. Journal of Zhejiang University: Engineering Science, 2010, 44(2): 379-385. (in Chinese) 路波, 陶国良, 刘昊, 等. 零重力模拟气动悬挂系统的建模及恒压控制[J]. 浙江大学学报: 工学版, 2010, 44(2): 379-385.

[13] Wang K, Lv K, Shi W R, et al. Pneumatic pressure control of large caliber optical polishing system[J]. Chinese Journal of Scientific Instrument, 2013, 34(3): 531-536. (in Chinese) 王楷, 吕科, 石为人, 等. 大口径光学抛光系统的气动压力控制[J]. 仪器仪表学报, 2013, 34(3): 531-536.

[14] Cao Y P, Yan X A. Pneumatic and control[M]. Tianjing: Tianjing University Press, 2010: 26-52. (in Chinese) 曹玉平, 阎祥安. 气压传动与控制[M]. 天津: 天津大学出版社, 2010: 26-52.

[15] Beater P. Pneumatic drives: system design, modeling and control[M]. Berlin: Springer Berlin Heidelberg, 2007: 113-116.

[16] Yuan L S, Li Y Z, Liu M, et al. Fuzzy active thermal control system of the inter planetary spacecraft[J]. Journal of Astronautics, 2006, 27(1): 81-84. (in Chinese) 袁领双, 李运泽, 刘猛, 等. 行星际航天器主动热控系统模糊控制[J]. 宇航学报, 2006, 27(1): 81-84.

[17] Karasakal O, Guzelkaya M, Eksin I, et al. An error-based on-line rule weight adjustment method for fuzzy PID controllers[J]. Expert Systems With Applications, 2011, 38(8): 10124-10132.

[18] Deng J L. Grey theory[M]. Wuhan: Huazhong University of Science & Technology Press, 2002: 10-28. (in Chinese) 邓聚龙. 灰色理论基础[M]. 武汉: 华中理工大学出版社, 2002: 10-28.

[19] Liu S, Lin Y. Grey systems: theory and applications[M]. Berlin: Springer Berlin Heidelberg, 2010: 35-69.

[20] Lian R J. Grey-prediction self-organizing fuzzy controller for robotic motion control[J]. Information Sciences, 2012, 202: 73-89.

Outlines

/