Solid Mechanics and Vehicle Conceptual Design

Pulse Transiently Chaotic Neural Network for the Analysis Method of Reliability

  • WANG Pidong ,
  • ZHANG Jianguo ,
  • MA Zhiyi ,
  • SUN Jing ,
  • GAO Peng
Expand
  • 1. School of Reliability and System Engineering, Beihang University, Beijing 100191, China;
    2. Science and Technology on Reliability and Engineering Laboratory, Beihang University, Beijing 100191, China;
    3. Beijing Satellite Manufacturer, Beijing 100094, China

Received date: 2013-04-27

  Revised date: 2013-09-06

  Online published: 2013-09-19

Supported by

National Basic Research Program of China (2013CB733000)

Abstract

The structural reliability index β can be solved as an optimization problem in engineering design. However, when the limited state function is high nonlinearity with concave failure domain, the classic methods of solving nonlinear programming such as sequential quadratic programming (SQP) method, penalty function method, and gradient projection method etc, have disadvantages in solving the local minimum solution. It is still difficult to deal with how to solve local minimum solution taking into account the calculation accuracy and efficiency. This paper presents a new method of reliability that the problem for solving reliability indexes is transformed into the nonlinear programming problem with constraint condition. Penalty function method is used to convert the problem into unconstrained nonlinear programming one. Pulse transiently chaotic neural network (PTCNN) is introduced to optimize globally so as to solve constrained nonlinear programming problems with local minimum solution quickly and efficiently. Finally the examples of different types of non-linear limit state functions are presented to prove that this method is feasible and efficient to address the problem with high dimension, highly nonlinear, non-differentiable and non-convex failure domain.

Cite this article

WANG Pidong , ZHANG Jianguo , MA Zhiyi , SUN Jing , GAO Peng . Pulse Transiently Chaotic Neural Network for the Analysis Method of Reliability[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(2) : 469 -477 . DOI: 10.7527/S1000-6893.2013.0382

References

[1] Hasofer A M, Lind N C. Exact and invariant second moment code format[J]. Journal of the Engineering Mechanics Division, 1974, 100(1): 111-121.

[2] Low B K, Tang W H. Reliability analysis of reinforced embankments on soft ground[J]. Canadian Geotechnical Journal, 1997, 34(5): 672-685.

[3] Nadim F. Probabilistic methods for geohazard problems: state-of-the-art[M]. Essen: Verlag Gluckauf, 2002: 333-350.

[4] Ang H S, Tang W H. Probability concepts in engineering planning and design[M]. New York: John Wiley & Sons, 1984: 20-21.

[5] Madsen H O, Krenk S, Lind N C. Methods of structural safety[M]. Englewood Cliffs: Prentice Hall, 1986: 37-38.

[6] Moses F. System reliability developments in structural engineering[J]. Structural Safety, 1982, 1(1): 3-13.

[7] Zhao G F, Li Y G, Wang H D. Forth moment method for structural reliability analysis based on maximum entropy theory[C]//The Sixth Workshop on Concrete Model Code for Asia, 1996.

[8] Zhao Y Q, Ono T. Moment methods for structural reliability[J]. Structural Safety, 2001, 23(1): 47-75.

[9] Lee S H, Kwak B M. Response surface augmented moment method for efficient reliability analysis[J]. Structural safety, 2006, 28(1): 261-272.

[10] Liu C L, Lu Z Z, Response surface combinaion improved by high order term for structural reliability analysis[J]. Acta Aeronautica et Astronautica Sinica, 2013, 27(4):594-599. (in Chinese) 刘成立, 吕震宙. 结构可靠性分析中考虑高次项修正的组合响应面法[J]. 航空学报, 2013, 27(4): 594-599.

[11] Gong Q, Zhang J G, Tan C L, et al. Neural networks combined with importance sampling techniques for reliability evaluation of explosive initiating device[J]. Chinese Journal of Aeronautics, 2012, 25(2): 208-215.

[12] Liu Z, Zhang J G, Wang C C, et al. Hybrid structure reliability method combining optimized Kriging model and importance sampling[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6): 1347-1355. (in Chinese) 刘瞻, 张建国, 王灿灿, 等. 基于优化Kriging模型和重要度抽样法的结构可靠度混合算法[J]. 航空学报, 2013, 34(6): 1347-1355.

[13] Huang J S, Griffiths D V. Observations on FORM in a simple geomechanics example[J]. Structural Safety, 2001, 33(1): 115-119.

[14] Papadrakakis M, Lagaros N D. Reliability-based structural optimization using neural networks and Monte Carlo simulation[J]. Computer Methods in Applied Mechanics and Engineering, 2002, 191(32): 3491-3507.

[15] Tolson B A, Maier H R, Simpson A R, et al. Genetic algorithms for reliability-based optimization of water distribution systems[J]. Journal of Water Resources Planning and Management, 2004, 130(1): 63-72.

[16] Long B, An W G, Jiang X W. Structural reliability anal ysis based on genetic simulated annealing algorithm[J]. Journal of Haerbin Engineering University, 2005, 26(6): 753-757. (in Chinese) 龙兵, 安伟光, 姜兴渭. 基于遗传模拟退火算法的结构可靠性分析[J]. 哈尔滨工程大学学报, 2005, 26(6): 753-757.

[17] Burton S A, Hajela P. A variable-complexity approach to second-order reliability-based optimization[J]. Structural and Multidisciplinary Optimization, 2003, 25(4): 237-250.

[18] Du X P, Chen W. Sequential optimization and reliability assessment method for efficient probabilistic design[J]. Journal of Mechanical Design, 2004, 126(2): 225-233.

[19] Youn B D, Choi K K. A new response surface methodology for reliability-based design optimization[J]. Computers Structural, 2004, 82(2-3): 241-256.

[20] Lv Z Z, Song S F, Li H S, et al. Analysis of structure reliability and reliability sensitivity[M]. Beijing: Science Press, 2009: 21-22.(in Chinese) 吕震宙, 宋述芳, 李洪双, 等, 结构机构可靠性及可靠性灵敏度分析[M]. 北京: 科学出版社, 2009: 21-22.

[21] Li H, Cao H D. Pulse transiently chaotic neural network for layout optimization[J]. Chinese Journal of Computational Mechanics, 2005, 22(5): 623-628. (in Chinese) 李昊, 曹宏铎. 基于PTCNN的结构布局优化问题研究[J]. 计算力学学报, 2005, 22(5): 623-628.

Outlines

/