ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Experimental Investigation on Active Vibration Control of Elastic Beam by Using Piezoelectric Stack Actuator
Received date: 2012-11-10
Revised date: 2013-09-02
Online published: 2013-09-17
Supported by
The Science and Technology Foundation of State Key Laboratory of Rotorcraft Aeromechanics (NBA10004)
The inertial actuator is often used in the active control system of structural response. Due to its shortcomings such as heavy weight, narrow band of working frequency and slow response speed, it hampers the performance of the control system. The piezoelectric actuator has the advantages of lighter weight, wider band of working frequency and faster response speed and can effectively improve the performance of the control system as an efficient actuator. In this paper, an experimental investigation on the active vibration control of a free-free elastic beam structure is conducted by using a piezoelectric stack actuator, taking the acceleration response at the observed point as the control objective and using the harmonic steady control strategy in the frequency domain. The experimental results demonstrate that the active vibration control system established in this paper can effectively control the vibration level of an elastic beam structure and has the adaptive control ability to fast track changes of external excitation.
SONG Laishou , XIA Pinqi . Experimental Investigation on Active Vibration Control of Elastic Beam by Using Piezoelectric Stack Actuator[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(1) : 171 -178 . DOI: 10.7527/S1000-6893.2013.0379
[1] Hoffmann F, Konstanzer P, Priems M. Active cabin vibration reduction for jet-smooth helicopter ride[C]//Proceedings of the 35th European Rotorcraft Forum, 2009.
[2] Lu Y, Gu Z Q, Ling A M. Flight test of active control of structure response for helicopter[J]. Journal of Vibration Engineering, 2012, 25(1): 24-29. (in Chinese) 陆洋, 顾仲权, 凌爱民. 直升机结构响应主动控制飞行试验[J]. 振动工程学报, 2012, 25(1): 24-29.
[3] Teal R S, Mccorvey D L, Mailoy D. Active vibration suppression for the CH-47D[C]//Proceedings of the 53rd Annual Forum of American Helicopter Society, 1997.
[4] Prouty R. Should we consider variable rotor speeds[J]. Vertiflite, 2004, 50(4): 24-27.
[5] Preumont A. Vibration control of active structures, an introduction[M]. Norwell, MA: Kluwer, 1997.
[6] Wang X, Ehlers C, Neitzel M. Electro-mechanical dynamic analysis of the piezoelectric stack[J]. Smart Materials and Structures, 1996, 5(4): 492-500.
[7] Flint E, Liang C, Rogers C A. Electromechanical analysis of piezoelectric stack active member power consumption[J]. Journal of Intelligent Material Systems and Structures, 1995, 6(1): 117-124.
[8] Redmond J, Barney P. Vibration control of stiff beams and plates using structurally integrated PZT stack actuators[J]. Journal of Intelligent Material Systems and Structures, 1997, 8(6): 525-635.
[9] Young A J, Hansen C H. Control of flexural vibration in a beam using a piezoceramic actuator and an angle stiffener[J]. Journal of Intelligent Material Systems and Structures, 1994, 5(4): 536-549.
[10] Kermani M R, Patel R V. Flexure control using piezostack actuators: design and implementation[J]. IEEE/ASME Transactions on Mechatronics, 2005, 10(2): 181-188.
[11] Yang Z C, Wang W, Gu Y S, et al. Smart structure vibration control using a new bending type of piezoelectric stack actuator[J]. Journal of Vibration and Shock, 2009, 28(9): 130-134. (in Chinese) 杨智春, 王巍, 谷迎松, 等. 一种弯曲型压电堆作动的设计及在振动控制中的应用[J]. 振动与冲击, 2009, 28(9): 130-134.
[12] Hanagud S, Babu G L. Smart structures in the control of airframe vibrations[J]. Journal of the American Helicopter Society, 1994, 39(2): 69-72.
[13] Singhvi R, Vennkatesan C. Vibration control of an idealized helicopter model using piezo stack sensor-actuator[C]//Proceedings of the 46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics & Materials Conference, 2005.
[14] Heverly D. Optimal actuator placement and active structure design for control of helicopter airframe vibrations[D]. Pennsylvania: Department of Mechanical and Nuclear Engineering, Pennsylvania State University, 2002.
[15] Walchko J C, Kim J S, Wang K W. Hybrid feedforward-feedback control for active helicopter vibration suppression[C]//Proceedings of the 63rd Annual Forum of American Helicopter Society, 2007.
[16] Song L S, Xia P Q. Coupled fuselage/piezoelectric stack actuator optimization method for active vibration control of helicopter[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1835-1841. (in Chinese) 宋来收, 夏品奇. 直升机振动主动控制的机身/压电叠层作动器耦合优化法[J]. 航空学报, 2011, 32(10): 1835-1841.
[17] Bauchau O A, Rodriguez J, Chen S Y. Coupled rotor-fuselage analysis with finite motions using component mode synthesis[J]. Journal of the American Helicopter Society, 2004, 49(2): 201-211.
[18] Yeo H, Chopra I. Coupled rotor/fuselage vibration analysis for teetering rotor and test data comparison[J]. Journal of Aircraft, 2001, 38(1): 111-121.
[19] Chandrasekar J, Liu L, Patt D. Adaptive harmonic steady state control for disturbance rejection[J]. IEEE Transactions on Control System Technology, 2006, 14(6): 993-1007.
[20] Veres S M. Adaptive harmonic control[J]. International Journal of Control, 2001, 74(12): 1219-1225.
/
〈 | 〉 |