Fluid Mechanics and Flight Mechanics

Tracking Near Space Vehicle Using Early-warning Satellite

  • LI Luogang ,
  • JING Wuxing ,
  • GAO Changsheng
Expand
  • Department of Aerospace Engineering, Harbin Institute of Technology, Harbin 150001, China

Received date: 2013-02-01

  Revised date: 2013-05-23

  Online published: 2013-08-16

Abstract

An algorithm based on a constrained total least squares combining adaptive interactive multiple model (CTLS-AIMM) is developed for the tracking of near space vehicles. First, taking near space vehicle characteristics into consideration, an early-warning satellite system is used to detect the target, and a constrained total least squares algorithm (CTLS) is used to calculate the pseudo position information roughly, based on which an adaptive interactive multiple model (AIMM) algorithm is developed for the real-time tracking. In the AIMM algorithm, appropriate model-sets are selected according to the characteristics of a near space vehicle, to describe the target motion, and iterative least square is used to calculate the adaptive parameters. A hypothetical scenario is taken as a testing case, and computer simulations show the effectiveness of the methods.

Cite this article

LI Luogang , JING Wuxing , GAO Changsheng . Tracking Near Space Vehicle Using Early-warning Satellite[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(1) : 105 -115 . DOI: 10.7527/S1000-6893.2013.0269

References

[1] Hwang I, Balakrishnan H, Tomlin C. State estimation for hybrid systems: applications to aircraft tracking[J]. IEE Proceedings: Control Theory and Applications, 2006, 153(5): 556-566.

[2] Seah C E, Hwang I. Terminal-area aircraft tracking using hybrid estimation[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(3): 836-849.

[3] Lovera Y J, Inseok H, Mario R. New algorithms for aircraft intent inference and trajectory prediction[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2): 370-382.

[4] Guan X, Zhao J. Research on tracking technology of the hypersonic aircraft based on IMM[C]//Proceedings of the 2011 International Conference on Wavelet Analysis and Pattern Recognition, 2011: 50-54.

[5] Wilcox Z D, MacKunis W. Lyapunov-Based exponential tracking control of a hypersonic aircraft with aerothermoelastic effects[J]. Journal of Guidance Control and Dynamics, 2010, 33(4): 1213-1224.

[6] Qian Y J, Jing W X, Gao C S. Autonomous navigation method for multi-satellites mission[J]. Journal of Harbin Institute of Technology, 2010, 42(5): 705-709.(in Chinese) 钱霙婧, 荆武兴, 高长生. 多航天器部署问题中的自主导航方法研究[J]. 哈尔滨工业大学学报, 2010, 42(5): 705-709.

[7] Sigthorsson D O. Robust linear output feedback control of an airbreathing hypersonic vehicle[J]. Journal of Guidance Control and Dynamics, 2008, 31(4): 1052-1066.

[8] Vu P, Biezad D J. Direct-lift design strategy for longitudinal control of hypersonic aircraft[J]. Journal of Guidance Control and Dynamics, 1994, 17(6): 1260-1266.

[9] Wang J, Zeng M, Hu Q L, et al. Early-warning satellite attitude maneuvers with hybrid control[C]//Proceedings of the 29th Chinese Control Conference, 2010: 508-513.

[10] Luo K P, Li Y J, Jiang W. Analysis and design of the early-warning satellite scheduling simulation system[C]//International Conference on Virtual Environments Human-Computer Interfaces and Measurements Systems, 2009: 53-57.

[11] Golub G H, van Loan C F. An analysis of the total least squares problem[J]. SIAM Journal on Numerical Analysis, 1980, 17(6): 883-893.

[12] Abatzoglou T J, Mendel J M. Constrained total least squares[C]//IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings. Dallas: 1987 International Conference on Acoustics, Speech, and Signal Processing, 1987: 1485-1488.

[13] Wang D, Zhang L, Wu Y. Constrained total least squares algorithm for passive location based on bearing only measurements[J]. Science in China (Series E), 2007, 50(4): 576-586.(in Chinese) 王鼎, 张莉, 吴瑛. 基于角度信息的约束总体最小二乘无源定位算法[J]. 中国科学E辑, 2007, 50(4): 576-586.

[14] Yang K, An J P, Bu X Y, et al. Constrained total least-squares location algorithm using time-difference-of-arrival measurements[J]. IEEE Transactions on Vehicular Technology, 2010, 59(3): 1558-1562.

[15] Xiao W G, Ding M L, Wang Q. Application of total least square algorithm in static decoupling of NGMIMU[J]. Chinese Journal of Aeronautics, 2004, 17(4): 224-228.

[16] Lerro D. Interacting multiple model tracking with target amplitude feature[J]. IEEE Transactions on Aerospace and Electronic Systems, 1993, 29(2): 494-509.

[17] Blackman S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Aerospace and Electronic Systems Magazine, 2004, 19(1): 5-18.

[18] Johnston L A. An improvement to the interacting multiple model (IMM) algorithm[J]. IEEE Transactions on Signal Processing, 2001, 49(12): 2909-2923.

[19] Farrell Ⅲ, William J. Interacting multiple model filter for tactical ballistic missile tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2008, 44(2): 418-426.

[20] Liu J, Li R. Hierarchical adaptive interacting multiple model algorithm[J]. IET Control Theory and Applications, 2008, 2(6): 479-487.

[21] Li X R, Jilkov V P. A survey of maneuvering target tracking, part I: dynamic models[J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1333-1363.

[22] Zhou H, Kumar K. A current statistical model and adaptive algorithm for estimating maneuvering targets[J]. Journal of Guidance Control and Dynamics, 1984, 7(5): 596-602.

[23] Qu W. Real-time distributed multi-object tracking using multiple interactive trackers and a magnetic-inertia potential model[J]. IEEE Transactions on Multimedia, 2007, 9(3): 511-519.

[24] Wang J H, Cao J, Wu D, et al. An object tracking algorithm based on the‘current’statistical model and the multi-feature fusion[J]. Journal of Software, 2012, 7(9): 2000-2008.

[25] Jia Z, Balasuriya A, Challa S. Vision based data fusion for autonomous vehicles target tracking using interacting multiple dynamic models[J]. Computer Vision and Image Understanding, 2008, 109(1): 1-21.

[26] Bolender M A, Doman D B. Nonlinear longitudinal dynamical model of an air-breathing hypersonic vehicle[J]. Journal of Spacecraft and Rockets, 2007, 44(2): 374-387.

[27] Weeks D J. Small satellites and the DARPA/air force FALCON program[J]. Acta Astronautica, 2005, 57(2): 469-477.

[28] Fiorentini L, Serrani A. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(2): 401-416.

[29] Smart M K. Flight data analysis of the hyShot 2 scramjet flight experiment[J]. AIAA Journal, 2006, 44(10): 2366-2375.

[30] Minvielle P. Tracking a ballistic re-entry vehicle with a sequential Monte-Carlo filter[C]//Aerospace Conference Proceedings, 2002: 1773-1787.

[31] Minkwan K. Electrostatic manipulation of a hypersonic plasma layer: images of the two-dimensional sheath[J]. IEEE Transactions on Plasma Science, 2008, 36, (4): 1198-1199.

[32] Blanchard R C, Wilmoth R G, Glass C E. Infrared sensing aeroheating flight experiment: STS-96 flight results[J]. Journal of Spacecraft and Rockets, 2001, 38(4): 465-472.

[33] Hoult C P. Space surveillance catalog growth during SBIRS low deployment[C]//IEEE Aerospace Applications Conference Proceedings, 1999: 208-209.

[34] Abatzoglou T J, Mendel J M. Constrained total least squares[C]//IEEE International Conference on Acoustics, Speech and Signal Processing-Proceedings, 1987:1485-1488.

[35] Abatzoglou T J, Mendel J M, Harada G A. The constrained total least squares technique and its applications to harmonic superresolution[J]. IEEE Transactions on Signal Processing, 1991, 39(5): 1070-1087.

[36] Mazor E, Averbuch A. Interacting multiple model methods in target tracking: a survey[J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(1): 103-123.

[37] O'Neill M K L. Design tradeoffs on scramjet engine integrated hypersonic waverider vehicles[J]. Journal of Aircraft, 1993, 30(6): 943-952.

[38] Yong E M, Qian W Q. Coupled design of maneuver glide reentry trajectory and aerodynamic characteristic parameters considering no-fly zone[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1): 66-75.(in Chinese) 雍恩米, 钱炜祺. 考虑禁飞圆的滑翔式机动弹道与气动特性参数耦合设计[J]. 航空学报, 2013, 34(1): 66-75.

[39] Zeng K C, Xiang J W. Uncertainty analysis of flight dynamic characteristics for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4): 798-808.(in Chinese) 曾开春, 向锦武. 高超声速飞行器飞行动力学特性不确定分析[J]. 航空学报, 2013, 34(4): 798-808.

[40] Zhang Z H, Yang L Y, Shen G Z. Switching LPV control method in wide flight envelope for hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2013, 33(9): 1706-1716.(in Chinese) 张增辉, 杨凌宇, 申功璋. 高超声速飞行器大包线切换LPV控制方法[J]. 航空学报, 2013, 33(9): 1706-1716.

[41] Weeks D J. Small satellites and the DARPA/air force FALCON program[C]//International Astronautical Federation-55th International Astronautical Congress, 2004: 3565-3574.

Outlines

/