ACTA AERONAUTICAET ASTRONAUTICA SINICA >
An Aeroelastic Optimization Design Approach for Structural Configuration of Flying Wings
Received date: 2013-03-20
Revised date: 2013-07-25
Online published: 2013-08-09
Supported by
National Natural Science Foundation of China (91116005,10902006)
An integrated aeroelastic optimization design approach based on the genetic algorithm is developed for the preliminary configuration design of a flying wing. An equivalent multi-plate model is adopted to resolve the structural dynamics characteristics. A panel approach is used to compute the aerodynamic force. A simple parameterization method is used to describe the wing geometry. The approach is applied to a flying wing and the objective is to minimize the structural mass subject to the static aeroelastic deformation and critical flutter speed constraints. It is found that the configuration parameter is more important for reducing the structure mass and a multilevel optimization is advised when the configuration and sizing variables are considered. The method provides a useful tool for the preliminary configuration design of a flying wing.
YANG Youxu , WU Zhigang , YANG Chao . An Aeroelastic Optimization Design Approach for Structural Configuration of Flying Wings[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(12) : 2748 -2756 . DOI: 10.7527/S1000-6893.2013.0353
[1] Begin L. The northrop flying wing prototypes. AIAA-1983-1047, 1983.
[2] Bolsunovsky A L, Buzoverya N P, Gurevich B I, et al. Flying wing-problems and decisions. Aircraft Design, 2001, 4(4): 193-219.
[3] Dmitriev V G, Shkadov L M, Denisov V E, et al. The flying-wing concept-changes and risks. AIAA-2003-2887, 2003.
[4] Roman D, Allen J B, Liebeck R H. Aerodynamic design challenges of the blended-wing-body subsonic transport. AIAA-2000-4335, 2000.
[5] Liebeck R H. Design of the blended wing body subsonic transport. Journal of Aircraft, 2004, 41(1): 10-25.
[6] Ghigliazza H H, Val R M, Perez E, et al. Wake of transport flying wings. Journal of Aircraft, 2007, 44(2): 558-562.
[7] Zhang M, Rizzi A, Meng R, et al. Aerodynamic design considerations and shape optimization of flying wings in transonic flight. AIAA-2012-5402, 2012.
[8] Vicroy D D, Loser T D, SchÜtte A. Static and forced-oscillation tests of a generic unmanned combat air vehicle. Journal of Aircraft, 2012, 49(6): 1558-1583.
[9] Tomac M, Rizzi A, Nangia R K, et al. Engineering methods applied to an unmanned combat air vehicle configuration. Journal of Aircraft, 2012, 49(6): 1610-1618.
[10] Wakayama S. Blended-wing-body optimization problem setup. AIAA-2000-4740, 2000.
[11] Wan Z Q, Liu D Y, T C H, et al. Studies on the influence of spar position on aeroelastic optimization of a large aircraft wing. Science China Technological Sciences, 2012, 55(1): 117-124.
[12] Xiao Z P. Aeroelastic robust optimization methodology for aircraft design. Beijing: School of Aeronautic Science and Engineering, Beihang University, 2010. (in Chinese) 肖志鹏. 飞机气动弹性鲁棒优化设计方法. 北京: 北京航空航天大学航空科学与工程学院, 2010.
[13] Giles G L. Equivalent plate analysis of aircraft wing box structures with general planform geometry. Journal of Aircraft, 1986, 23(11): 859-864.
[14] Livne E. Equivalent plate structural modeling for wing shape optimization including transverse shear. AIAA Journal, 1994, 32(6): 1278-1288.
[15] Kapania R K, Youhua L. Static and vibration analyses of general wing structures using equivalent-plate models. AIAA Journal, 2000, 38(7): 1269-1277.
[16] Yang Y X, Wu Z G, Yang C. Flutter analyses of missile wing using equivalent plate model. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 833-840. (in Chinese) 杨佑绪, 吴志刚, 杨超. 基于等效板模型的弹翼颤振分析. 航空学报, 2011, 32(5): 833-840.
[17] ZONA. ZAERO Theoretical manual V7.4. Scottsdale: ZONA Technology Inc., 2006.
[18] Yang Y X, Wu Z G, Yang C, et al. An aeroelasticity analysis model oriented toward wing design. Acta Aeronautica et Astronautica Sinica, 2011, 32(10): 1860-1868. (in Chinese) 杨佑绪, 吴志刚, 杨超, 等. 一种面向翼面设计的气动弹性分析模型. 航空学报, 2011, 32(10): 1860-1868.
[19] Reissner E. The effect of transverse shear deformation on the bending of elastic plates. Journal of Applied Mechanics, 1945, 12(2): 69-77.
[20] Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates. Journal of Applied Mechanics, 1951, 18: 31-38.
[21] Frank H G, Daniel J I, Kapania R K. Structural and aeroelastic modeling of general planform wings with morphing airfoils. AIAA Journal, 2002, 40(4): 628-637.
[22] Yang Y X, Wu Z G, Yang C. Equivalent plate modeling for complex wing configurations. Procedia Engineering, 2012, 31: 409-415.
[23] Yang C, Yang Y X, Wu Z G. Shape sensitivities analysis of flutter characteristics of a low aspect ratio wing using analytical method. Science China Technological Sciences, 2012, 55(12): 3370-3377.
[24] Wu Z G, Yang C. Aeroservoelastic design optimization of flexible wings. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 570-573. (in Chinese) 吴志刚, 杨超. 机翼的气动伺服弹性优化设计研究. 航空学报, 2006, 27(4): 570-573.
[25] Holland J H. Adaptation in natural and artificial system. Cambridge: The MIT Press, 1992: 1-50.
[26] Haftka R T, GÜrdal Z. Penalty function methods. Elements of structural optimization. London: Kluwer Academic Publishers, 1992: 186-198.
[27] Xuan G N, Cheng R W. Genetic algorithms and engineering design. Yu X J, translated. Beijing: Tsinghua University Press, 2004: 21-30. (in Chinese) 玄光男, 程润伟. 遗传算法与工程优化. 于韵杰, 译. 北京: 清华大学出版社, 2004: 21-30.
/
〈 | 〉 |