Material Engineering and Mechanical Manufacturing

Preparation, Characterization and Fatigue Performance of Anodic Oxide Film on Titanium Alloy TC18 in Sodium Tartrate Electrolyte

  • LIU Jianhua ,
  • YANG Kang ,
  • YU Mei ,
  • LI Songmei ,
  • WU Liang ,
  • YU Xiumei
Expand
  • School of Materials Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2013-06-03

  Revised date: 2013-07-23

  Online published: 2013-08-08

Abstract

Anodic oxide of titanium alloy TC18 in the film-forming agent of sodium tartrate, a new environmentally friendly electrolyte system without hydrofluoric acid, is investigated and the anodic oxide films are successfully prepared. Morphology and phase structure are studied using scanning electron microscopy and Raman spectrometer. Corrosion resistance of TC18 titanium alloy after anodizing is investigated by adopting electrochemical method. The behaviors of high frequency fatigue are tested on the universal high frequency fatigue testing machine. The results show that films has the surface morphology of ravines and bulge. Amorphous TiO2, anatase phase and rutile phase exist in that films, and brookite phase may also exist in that films. After anodic oxidation, the corrosion resistance of TC18 titanium alloy is significantly improved. Compared to the traditional anodic oxidation in sulfuric acid-phosphoric acid, anodic oxidation in sodium tartrate does not decrease the tensile performance and fatigue performance of TC18 titanium alloy, which means that tensile performance and fatigue performance is well improved.

Cite this article

LIU Jianhua , YANG Kang , YU Mei , LI Songmei , WU Liang , YU Xiumei . Preparation, Characterization and Fatigue Performance of Anodic Oxide Film on Titanium Alloy TC18 in Sodium Tartrate Electrolyte[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(3) : 902 -910 . DOI: 10.7527/S1000-6893.2013.0351

References

[1] Dong T X, Yang C S, Li F, et al. Development and actuality of composition analysis for aeronautical metal materials in China[J]. Journal of Materials Engineering, 2002, 12(3): 5. (in Chinese) 董天祥, 杨春晟, 李帆, 等. 国内航空金属材料成分分析技术现状及发展[J]. 材料工程, 2002, 12(3): 5.

[2] Popa M V, Vasilescu E, Drob P, et al. Anodic passivity of some titanium base alloys in aggressive environments[J]. Material Corrosion, 2002, 53(1): 51-55.

[3] Roger T. Titanium in the geothermal industry[J]. Geothermics, 2003, 32(4-6): 679-687.

[4] Xing Z K, Tang E J, Duan R, et al. Research on structure and properties of micro-arc anodic oxidation film on TC4 titanium alloy[J]. Material Protection, 2005, 38(12): 54-57. (in Chinese) 幸泽宽, 唐恩军, 段睿, 等. TC4钛合金微弧阳极氧化膜层结构与性能的研究[J]. 材料保护, 2005, 38(12): 54-57.

[5] Pouilleau J, Devilliers D, Garrido F, et al. Structure and composition of passive titanium oxide films[J]. Materials Science and Engineering: B, 1997, 47(3): 235-243.

[6] Zhai W J, Zhu B Q, Liu L F. Tribo-electrochemical characteristics of Ti-6Al-4V’s oxidation film in body fluid[J]. Tribology, 2009, 29(5): 425-431. (in Chinese) 翟文杰, 朱宝全, 刘莲芳. TC4(Ti-6Al-4V)氧化膜在生理介质中的摩擦电化学行为[J]. 摩擦学学报, 2009, 29(5): 425-431.

[7] Che X H, Fan Z G, Zhang J L. Experimental study of preparation of TiO2 porous films on the surface of TC4 titanium alloy by anodic oxidation[J]. Journal of Materials Engineering, 2010, 10(3): 38-41. (in Chinese) 车晓红, 樊占国, 张景垒. TC4钛合金表面阳极氧化制备TiO2多孔膜的实验研究[J]. 材料工程, 2010, 10(3): 38-41.

[8] Liu M H, Wen D, Cai J P, et al. Study of structure and performance of anti-wear anodizing coating of titanium alloys[J]. Journal of Materials Engineering, 2009(12): 72-79. (in Chinese) 刘明辉, 翁端, 蔡健平, 等. 钛合金耐磨阳极氧化膜层结构和性能研究[J]. 材料工程, 2009(12): 72-79.

[9] Cao C X. Application of titanium alloy on large transporter[J]. Rare Metals Letters, 2006, 25(1): 17-21.

[10] Sheng X F, Ding Z W, Zhu Y F. The effects of deformation and heat treatment on the microstructure and properties of Ti-5AI-5Mo-5V-1Cr-1Fe titanium alloys[J]. Acta Metallurgica Sinica, 1999, 35(1): 465-471.

[11] Nyakana S L, Fanning J C, Boyer R R. Quick reference guide for β titanium alloys in the 00s[J]. Journal of Materials Engineering and Performance, 2005, 14(6): 799-811.

[12] Liu J H, W L, Li S M, et al. Preparation and characterization of anodic oxide film on titanium alloy Ti-10V-2Fe-3Al in sodium oxalate electrolyte[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(4): 852-856. (in Chinese) 刘建华, 吴量, 李松梅, 等. 草酸钠体系中Ti-10V-2Fe-3Al 钛合金阳极氧化膜的制备与表征[J]. 航空学报, 2010, 31(4): 852-856.

[13] Yu M, Chen G H, Liu J H, et al. Effect of adipic acid on fatigue performance of sulfuric anodizing for aluminum alloy[J]. Heat Treatment of Metal, 2011, 36(6): 50-53. (in Chinese) 于美, 陈高红, 刘建华, 等. 己二酸对铝合金硫酸阳极氧化疲劳性能的影响[J]. 金属热处理, 2011, 36(6): 50-53.

[14] Zhao J, Zhu J L, Xue H J, et al. Effects of anodizing methods on behavior of 7075 aluminum alloy[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2008, 40(3): 412-416. (in Chinese) 赵军, 朱建龙, 薛花娟, 等. 阳极氧化对7075铝合金疲劳性能的影响[J]. 南京航空航天大学学报, 2008, 40(3): 412-416.

[15] Shahzad M, Chaussumier M, Chieragatti R, et al. Surface characterization and influence of anodizing process on fatigue life of Al 7050 alloy [J]. Materials and Design, 2011, 32(6): 3328-3335.

[16] Liu J H, Wu G L, Yu M, et al. Influence of incremental rate of anodising current on roughness and electrochemical corrosion of the oxide film on titanium alloy Ti-10V-2Fe-3Al[J]. Surface Engineering, 2012, 28(6): 406-411.

[17] Liu J H, Wu L, Yu M, et al. Effects of sealing process on corrosion resistance and roughness of anodic films of titanium alloy Ti-10V-2Fe-3Al[J]. Journal of Central South University of Technology, 2011,18(6): 1795-1801.

[18] Yi J L, Liu J H, Li S M, et al. Morphology and growth of porous anodic oxide films on Ti-10V-2Fe-3Al in neutral tartrate solution[J]. Journal of Central South University of Technology, 2011, 18(1): 6-15.

[19] Liu Y, Skeldon P, Thompson G E, et al. Anodic film growth on an Al-21 at.% Mg alloy[J]. Corrosion Science, 2002, 44(5): 1133-1142.

[20] Wu C T, Lu F H. Electrochemical deposition of barium titanate films using a wide electrolytic voltage range[J]. Thin Solid Films, 2001, 398(11): 621-625.

[21] Tomaszek R, Pawlowski L, Gengembre L, et al. Microstructure of suspension plasma sprayed multilayer coatings of hydroxyapatite and titanium oxide[J]. Surface and Coating Technology, 2007, 201(16): 7432-7440.

[22] Wang J, Zhang Q W, Yin S, et al. Raman spectroscopic analysis of sulphur-doped TiO2 by co-grinding with TiS2[J]. Journal of Physics and Chemistry of Solids, 2007, 68(2): 189-192.

[23] Matykina E, Hernandez-López J M, Condea A, et al. Morphologies of nanostructured TiO2 doped with F on Ti-6Al-4V alloy[J]. Electrochemica Acta, 2011, 56(5): 2221-2229.

[24] Kuo C S, Tseng Y H, Huang C H, et al. Carbon-containing nano-titania prepared by chemical vapor deposition and its visible-light-responsive photocatalytic activity[J]. Journal of Molecular Catalysis, 2007, 270(1-2): 93-100.

[25] Zhang Z. The summarization of β titanium alloy[J]. Chinese Journal of Rare Metals, 1995, 19(4): 296-299. (in Chinese) 张翥. β钛合金概述[J]. 稀有金属, 1995, 19(4): 296-299.

[26] Dolley E J, Lee B, Wei R P. The effect of pitting corrosion on fatigue life[J]. Fatigue and Fracture of Engineering Materials and Structures, 2000, 23(7): 555-560.

[27] Pao P S, Gill S J, Feng C R. On fatigue crack initiation from corrosion pits in 7075-T7351 aluminium alloy[J]. Scripta Materialia, 1998, 43(5): 391-396.

[28] Camargo A, Voorwald H. Influence of anodization of fatigue strength of 7050-T7451 aluminium alloy[J]. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30(11): 993-1007.

[29] Cirik E, Genel K. Effect of anodic oxidation on the fatigue performance of 7075-T6 alloy[J]. Surface and Coatings Technology, 2008, 202(21): 5190-5201.

[30] Liu J H, Liu Z, Yu M, et al. Properties of anodic oxidation film on aluminum alloy in three kinds of solutions[J]. The Chinese Journal of Nonferrous Metals, 2012, 22(7): 2031-2039. (in Chinese) 刘建华, 刘洲, 于美, 等. 3种溶液体系下铝合金阳极氧化膜的性能[J]. 中国有色金属学报, 2012, 22(7): 2031-2039.

Outlines

/