ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Numerical Simulation on the Aerodynamic Performance of the Double Swept Canard
Received date: 2013-04-23
Revised date: 2013-07-12
Online published: 2013-07-16
The concept of a double swept canard is proposed in the first part of this paper for comparison with the poor performance of the trapezoidal canard with a moderate leading edge sweep angle. The aerodynamic performance of the canard configuration with the trapezoidal canard and the double swept canard is investigated respectively by numerical simulation, and the flow mechanism that affects the aerodynamic performance of the double swept canard is analyzed. The results show that, for the double swept canard, the outboard wing section with its large leading edge sweep angle can keep the canard vortex stable with high intensity after the vortex core breakdown, increase the stall angle of the canard, and improve the outboard wing flow field by induction. Thus,it can improve the aerodynamic performance of the configuration at high angles of attack, so that better aerodynamic performance of the configuration can be achieved. However, it suffers a slight lift loss at low angles of attack due to its adverse effect on the development of the attached flow and leading edge vortex. A double swept canard has larger deflection angles available at low angles of attack because of its larger stall angle, so that higher pitch up control capability can be achieved. On the premise of satisfying the constraints of stealth, a double swept canard has better supersonic performance because of its lower supersonic drag.
LI Chunpeng , LIU Tiezhong , JIANG Zengyan , QIN Jiacheng . Numerical Simulation on the Aerodynamic Performance of the Double Swept Canard[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(2) : 427 -435 . DOI: 10.7527/S1000-6893.2013.0339
[1] Ma B F, Liu P Q, Deng X Y. Research advances on a close-coupled canard wing configuration[J]. Acta Aerodynamica Sinica, 2003, 21(3): 320-329. (in Chinese) 马宝峰, 刘沛清, 邓学蓥. 近距耦合鸭式布局气动研究进展[J]. 空气动力学学报, 2003, 21(3): 320-329.
[2] Behrbohm H. Basic low speed aerodynamic of short-coupled canard configuration of small aspect ratio, TN-60[R]. Linkoping, Sweden: SAAB, 1965.
[3] Richard M H, John M, Kersh J R. Effect of canard deflection on enhanced lift for a close-coupled-canard configuration, AIAA-1991-3222-CP[R]. Reston: AIAA, 1991.
[4] Fang B R. Aircraft aerodynamic configuration design[M]. Beijing: Aviation Industry Press, 1997: 280-360. (in Chinese) 方宝瑞. 飞机气动布局设计[M]. 北京: 航空工业出版社, 1997: 280-360.
[5] Eugene L T. Effect of canard position on the longitudinal aerodynamic characteristics of a close-coupled canard-wing-body configuration, AIAA-1991-3306-CP[R]. Reston: AIAA, 1991.
[6] Oelker H C, Hummel D. Investigation on the vorticity sheets of a close-coupled delta-canard configuration[J]. Journal of Aircraft, 1989, 26(7): 657-666.
[7] Hummel D, Oelker H C. Low-speed characteristics for the wing-canard configuration of the international vertex flow experiment[J]. Journal of Aircraft, 1994, 31(4): 868-878.
[8] Richard M H, John F O. Flow field study of a closed-coupled canard configuration[J]. Journal of Aircraft, 1994, 31(4): 908-914.
[9] Liu P Q, Wei Y. Vortex structures on close-coupled canard configurations[J]. Journal of Experiments in Fluid Mechanics, 2005, 19(3): 85-89. (in Chinese) 刘沛清, 魏园. 在近距耦合鸭式布局中的涡系结构[J]. 实验流体力学, 2005, 19(3): 85-89.
[10] Lu Z Y. A study on flow patterns and aerodynamic characteristics for canard-double delta wing configuration, AIAA-1997-0324[R]. Reston: AIAA, 1997.
[11] Ma B F, Liu P Q, Deng X Y. Characteristics of canard vortex interaction with strake vortex at high incidence[J]. Acta Aeronoutica et Astronautica Sinica, 2002, 23(6): 560-563. (in Chinese) 马宝峰, 刘沛清, 邓学蓥. 大迎角下鸭翼涡与边条涡的干扰特性[J]. 航空学报, 2002, 23(6): 560-563.
[12] Eugene L T. Navier-Stokes simulation of a close-coupled canard-wing-body configuration[J]. Journal of Aircraft, 1992, 29(5): 830-838.
[13] Ismail H T, Max F. Computational study of subsonic flow over a delta canard-wing-body configuration[J]. Journal of Aircraft, 1998, 35(4): 554-560.
[14] Liu P Q, Fan W B, Cao S. Numerical simulation on vortex-control technology of canard-spanwise blowing of close-coupled canard wing configuration[J]. Aircraft Design, 2010, 30(5): 7-11, 30. (in Chinese) 刘沛清, 樊文博, 曹硕. 近耦合鸭式布局鸭翼展向吹气涡控技术数值模拟研究[J]. 飞机设计, 2010, 30(5): 7-11, 30.
[15] Song W C, Xie P, Zheng S, et al. A research on the aerodynamic characteristics of a small aspect ratio, high lift fighter configuration[J]. Engineering Science, 2001, 3(8): 70-75. (in Chinese) 宋文骢, 谢品, 郑遂, 等. 一种小展弦比高升力飞机的气动布局研究[J]. 中国工程科学, 2001, 3(8): 70-75.
[16] Yu C, Wang X, Chen P, et al. Study of control characteristics for all moving wing tips in delta wing tailless configuration[J]. Acta Aeronoutica et Astronautica Sinica, 2012, 33(11): 1975-1983. (in Chinese) 于冲, 王旭, 陈鹏, 等. 三角翼无尾布局全动翼尖的操纵性能研究[J]. 航空学报, 2012, 33(11): 1975-1983.
[17] Liu P Q, Wen R Y, Zhang G W. A study on lift-enhancement with vortex control technique of canard-spanwise blowing[J]. Journal of Experiments in Fluid Mechanics, 2006, 20(3): 39-44. (in Chinese) 刘沛清, 温瑞英, 张国伟. 鸭翼展向吹气涡控技术增升特性研究[J]. 实验流体力学, 2006, 20(3): 39-44.
/
〈 | 〉 |