Fluid Mechanics and Flight Mechanics

Effect of Suction Control on Separation Flow Around an Airfoil at Low Reynolds Numbers

  • ZHANG Wanglong ,
  • TAN Junjie ,
  • CHEN Zhihua ,
  • REN Dengfeng
Expand
  • 1. School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
    2. National Key Laboratory of Transient Physics, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2013-04-09

  Revised date: 2013-06-24

  Online published: 2013-06-26

Abstract

In order to research the effects of suction zone locations with respect to separation point, hole spacings and diameters on separated flow suppression under suction control, some local porous suction distributions are designed on the NACA0012 airfoil upper surface, where the flow separation often happens at low Reynolds numbers. The effectiveness of the designed suction distributions is numerically investigated, by using AUSM+-up scheme, large eddy simulation method and lower-upper symmetric Gause-seidel (LU-SGS) implicit scheme with dual-time-stepping technique. The computational results show that when the suction zone is located behind the separation point, the control effect is best. The suction coefficient should be limited by a minimum value to obtain fast and effective control effect, also must be limited by a maximum value to ensure the figure-of-merit (FOM) of suction control is larger than one. The hole spacings and diameters have smaller effects on airfoil aerodynamics performance, but larger influences on FOM distributions.

Cite this article

ZHANG Wanglong , TAN Junjie , CHEN Zhihua , REN Dengfeng . Effect of Suction Control on Separation Flow Around an Airfoil at Low Reynolds Numbers[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014 , 35(1) : 141 -150 . DOI: 10.7527/S1000-6893.2013.0314

References

[1] Selig M S, Guglielmo J J. High-lift low Reynolds number airfoil design[J]. Journal of Aircraft, 1997, 34(1): 72-79.

[2] Ran J H, Liu Z Q, Bai P. The effect of relative thickness to the dynamic aerodynamic characteristics about pitching airfoils[J]. Acta Aerodynamic Sinica, 2008, 26(2): 178-185. (in Chinese) 冉景洪, 刘子强, 白鹏. 相对厚度对低雷诺数流动中翼型动态气动力特性的影响[J]. 空气动力学学报, 2008, 26(2): 178-185.

[3] Wang S, Mi J C. Effect of large turbulence intensity on airfoil load and flow[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1): 41-48.(in Chinese) 王庶, 米建春. 大湍流度对超低雷诺数下翼型受力及绕流的影响[J]. 航空学报, 2011, 32(1): 41-48.

[4] Chen N Q. A numerical simulation of unsteady separated flow around a circular cylinder at suction boundary conditions[J]. Acta Aerodynamic Sinica, 1994, 12(3): 287-294. (in Chinese) 陈南茜. 吸气条件对圆柱非定常分离流影响的数值研究[J]. 空气动力学学报, 1994, 12(3): 287-294.

[5] Bai P, Zhou W J, Wang Y Y. Investigation of effect of suction on delta wing separation flow at high angle-of-attack[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(5): 393-398. (in Chinese) 白鹏, 周伟江, 汪翼云. 三角翼大攻角分离流开缝吸气效应研究[J]. 航空学报, 1999, 20(5): 393-398.

[6] Owens D B, Perkins J N. Improved performance on highly swept wings by suction boundary-layer control, AIAA-1996-0431[R]. Reston: AIAA, 1996.

[7] Fournier G, Pellerin S, Phuoc L T. Control by suction of an incompressible flow past a circular cylinder: comparison between experimental and LES results, AIAA-2004-2119[R]. Reston: AIAA, 2004.

[8] Genc S M, Kaynak U. Control of flow separation and transition point over an airfoil at low Reynolds number using simultaneous blowing and suction, AIAA-2009-3672[R]. Reston: AIAA, 2009.

[9] Wahidi R, Bridges D H. Effects of distributed suction on an airfoil at low Reynolds number, AIAA-2010-4714[R]. Reston: AIAA, 2010.

[10] Ohtake T, Nakae Y, Motohashi Y. Nonlinearity of the aerodynamic characteristics of NACA0012 aerofoil at low Reynolds numbers[J]. Journal of the Japan Society for Aeronautical and Space Sciences, 2007, 55(644): 439-445.

[11] Ying Z F, Chen Z H, Fan B C, et al. Large eddy simulation of 3-D square channel flow around wall-mounted rectangle cylinder[J]. Journal of Nanjing University of Science and Technology: Natural Science, 2008, 32(2): 154-159. (in Chinese) 应展烽, 陈志华, 范宝春, 等. 三维方管中柱体可压绕流的大涡模拟[J]. 南京理工大学学报: 自然科学版, 2008, 32(2): 154-159.

[12] Boudet J, Caro J, Jacob M C. Large eddy simulation of a single airfoil tip-clearance flow[R]. AIAA-2010-3978, 2010.

[13] Liou M S. A sequel to AUSM, Part Ⅱ: AUSM+-up for all speeds[J]. Journal of Computational Physics, 2006, 214(1): 137-170.

[14] Jiang G S, Shu C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202-228.

[15] Rango S D, Zingg D W. Implicit Navier-Stokes computations of unsteady flows using sub-iteration methods, AIAA-1996-2088[R]. Reston: AIAA, 1996.

[16] Xu H Y, Pollard A. Large eddy simulation of turbulent flow in a square annular duct[J]. Physics of Fluids, 2001, 13(11): 3321-3337.

[17] Saeed T I, Graham W R, Babinsky H, et al. Boundary-layer suction system design for application to a laminar flying wing aircraft, AIAA-2010-4379[R]. Reston: AIAA, 2010.

[18] Bridges D H. Early flight test and other boundary layer research at Mississippi State 1949-1960[J]. Journal of Aircraft, 2007, 44(5): 1635-1652.

Outlines

/