ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Applied Research on Airborne SAR and Optical Image Registration Based on Control Line Method
Received date: 2013-03-29
Revised date: 2013-06-17
Online published: 2013-06-20
Supported by
National Natural Science Foundation of China (61203170);Aeronautical Science Foundation of China (20110752005);Funding of Jiangsu Innovation Program for Graduate Education;Fundamental Research Funds for the Central Universities (CXLX12_0160);Special Foundation of China Postdoctoral Science (2013T60539)
According to the realistic needs of the unmanned aerial vehicle (UAV) scene matching navigation, image registration method is proposed, based on linear features of the airborne synthetic aperture radar (SAR) and optical images containing typical man-made objects. Firstly, improved line segment detection (LSD) method is proposed to extract linear features of the image; Secondly, we construct the control lines and design an image registration method. Finally, precise automatic image registration is achieved based on the affine transformation model. The experimental results show that the proposed method has high registration accuracy for the SAR image and optical image, which is different in intensive, rotation and translation. The computation time is substantially reduced, and it is possible to meet some of the real-time applications.
LIU Zhongjie , CAO Yunfeng , ZHUANG Likui , DING Meng . Applied Research on Airborne SAR and Optical Image Registration Based on Control Line Method[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(9) : 2194 -2201 . DOI: 10.7527/S1000-6893.2013.0309
[1] Candocia F, Adjouadi M. A similarity measure for stereo feature matching. IEEE Transactions on Image Processing, 1997, 6(10): 1460-1464.
[2] Dawn S, Saxena V, Sharma B. Remote sensing image registration techniques: a survey. Image and Signal Processing, 2010, 6134: 103-112.
[3] Chen X, Qiu P H. Intensity-based image registration by nonparametric local smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2011, 33(10): 2081-2092.
[4] Yi M, Guo B L. Aerial video image registration method based on invariant feature and mapping restraint. Acta Aeronautica et Astronautica Sinica, 2012, 33(10): 1872-1880. (in Chinese) 易盟, 郭宝龙. 基于不变特征和映射抑制的航拍视频图像配准. 航空学报, 2012, 33(10): 1872-1880.
[5] Liu B Q, Feng D Z, Wu N, et al. An image automatic registration method for InSAR complex images based on point features. Acta Aeronautica et Astronautica Sinica, 2007, 28(1): 161-166. (in Chinese) 刘宝泉, 冯大政, 武楠, 等. 基于点特征的干涉合成孔径雷达复图像自动配准算法. 航空学报, 2007, 28(1): 161-166.
[6] Niu L P, Mao S Y, Chen W. Multi-sensor image registration method adapted for large scale. Acta Aeronautica et Astronautica Sinica, 2006, 27(3): 475-480. (in Chinese) 牛力丕, 毛士艺, 陈炜. 一种适应较大比例变化的多传感器图像配准方法. 航空学报, 2006, 27(3): 475-480.
[7] Stamos I, Leordeanu M. Automated feature-based range registration of urban scenes of large scale.2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003, 2: II-561.
[8] Kim Y S, Lee J H, Ra J B. Multi-sensor image registration based on intensity and edge orientation information. Pattern Recognition, 2008, 41(11): 3356-3365.
[9] Su J, Lin X G, Liu D Z. A multi-sensor image registration algorithm based on structure feature edges. Acta Automatica Sinca, 2009, 35(3): 251-257. (in Chinese) 苏娟, 林行刚, 刘代志. 一种基于结构特征边缘的多传感器图像配准方法. 自动化学报, 2009, 35(3): 251-257.
[10] Li Y, Cui Y Y, Han X Y. Optical image and SAR image registration based on linear features and control points. Acta Automatica Sinca, 2012, 38(12): 1968-1974. (in Chinese) 李映, 崔杨杨, 韩晓宇. 基于线特征和控制点的可见光和SAR图像配准. 自动化学报, 2012, 38(12): 1968-1974.
[11] Ji J, Ang H S, Wang X G, et al. Fast extraction and matching of strait lines on sequential images. Journal of Nanjing University of Aeronautics & Astronautics, 2005, 37(2): 227-231. (in Chinese) 季建,昂海松,王旭刚,等. 序列图像中直线边缘快速提取和匹配. 南京航空航天大学学报, 2005, 37(2): 227-231.
[12] Hu Z L, Sun J P, Yuan Y N, et al. SAR image despeckling in wavelet domain based on α-stable model. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 928-933. (in Chinese) 胡正磊, 孙进平, 袁运能, 等. 利用α稳定分布的小波域SAR图像降斑算法. 航空学报, 2006, 27(5): 928-933.
[13] Gioi V, Grompone R, Jakubowicz J, Morel J M, et al. LSD: a fast line segment detector with a false detection control. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(4): 722-732.
[14] Desolneux A, Moisan L, Morel J M. Edge detection by Helmholtz principle. Journal of Mathematical Imaging, 2001, 14(3): 271-284.
[15] Desolneux A, Moisan L, Morel J M. Computational gestalts and perception thresholds. Journal of Physiology-Paris, 2003, 97(2): 311-324.
/
〈 | 〉 |