ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Mechanism Design and Dynamics Analysis of High Speed Parallel Robot for Dynamic Test in Low Speed Wind Tunnel
Received date: 2012-03-13
Revised date: 2012-07-16
Online published: 2013-03-29
Supported by
Defense Industrial Technology Development Program (JW20*2009035)
In order to simulate the multiple degrees of freedom (DOF) wind tunnel test of an aircraft, a high speed 6-DOF parallel mechanism for low speed wind tunnel tests is designed. The structural parameters of the mechanism are given by a comprehensive analysis of its requirements and restrictions. The characteristics of the parallel mechanism are analyzed. The vibration responses at the limit positions of the system are calculated by ANSYS software. At the same time, a flexible dynamic simulation for high speed emergency braking is analyzed by ADAMS tool; the characteristics of high speed braking are summerized based on a comparative analysis of the rigid and flexible brake loads. The simulation results prove that this study is important for the design of the prototype of a parallel mechanism and its application. The experiment shows that the parallel mechanism can fulfill both single degree and multi degree oscillatory motions; it also has a large work space (up to 30°/500 mm), high motion accuracy (up to 0.05°/0.5 mm) and high speed (up to 5 m/s). In conclusion, the high speed 6-DOF parallel mechanism has high motion capability to meet the wind tunnel test requirements.
XIE Zhijiang , SUN Xiaoyong , SUN Haisheng , ZHANG Jun . Mechanism Design and Dynamics Analysis of High Speed Parallel Robot for Dynamic Test in Low Speed Wind Tunnel[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(3) : 487 -494 . DOI: 10.7527/S1000-6893.2013.0084
[1] Chen Z H, Chen W H. Structure design and finite element analysis of the high angle of attack mechanism in 2.4 m wind tunnel. Journal of Experiments in Fluid Mechanics, 2008, 22(4): 84-88. (in Chinese) 陈振华, 陈万华. 2.4 m风洞大迎角机构结构设计与有限元分析. 实验流体力学, 2008, 22(4): 84-88.
[2] Sun H S, Zhang H, Tang G S, et al. The development of high angle of attack test equipment in the 8 m×6 m low speed wind tunnel. Journal of Experiments in Fluid Mechanics, 2009, 23(1): 70-73. (in Chinese) 孙海生, 张晖, 汤更生, 等. 8 m×6 m风洞特大迎角试验设备研制. 实验流体力学, 2009, 23(1): 70-73.
[3] Kawamura S, Kino H, Won C. High speed manipulation by using parallel wire driven robots. Robotica, 2000, 40 (2): 13-21.
[4] Zheng Y Q, Lin Q, Liu X W. Design methodology of wire-driven parallel support systems in the low speed wind tunnels and attitude control scheme of the scale model. Acta Aeronautica et Astronautica Sinica, 2005, 26(6): 774-778. (in Chinese) 郑亚青, 林麒, 刘雄伟. 低速风洞绳牵引并联支撑系统的机构与模型姿态控制方案设计. 航空学报, 2005, 26(6): 774-778.
[5] DNW German-Dutch Wind Tunnels. Annual Report 2004. URL:http://www.dnw.aero.
[6] Huebner A R. Experimental and numerical investigations of unsteady aerodynamic derivatives for transport aircraft configurations. AIAA-2007-1076, 2007.
[7] Loeser T, Bergmann A. Capabilities of deployment tests at DNW-NWB. RTO-AVT-133, 2006: 13-1-13-11.
[8] Bergmann A, Huebne A, Loeser T. Experimental and numerical research on the aerodynamics of unsteady moving aircraft. Aerospace Sciences, 2008, 44(2): 121-137.
[9] Xiao Y W, Lin Q, Zheng Y Q, et al. Model aerodynamic tests with a wire-driven parallel suspension system in low-speed wind tunnel. Chinese Journal of Aeronautics, 2010, 23(4), 393-400.
[10] Staicu S. Inverse dynamics of the 3-PRR planar parallel robot. Robotics and Autonomous Systems, 2009, 57(5): 556-563.
[11] Huang Q, Zheng Y Q, Lin Q. Dynamic analysis for single-DOF oscillation of vehicle model in a 6-DOF wire-dri-ven parallel manipulator. Engineering Mechanics, 2010, 27(10): 230-234. (in Chinese) 黄琴, 郑亚青, 林麒. 6自由度绳牵引并联机构飞行器模型单自由度振荡运动的动力学分析. 工程力学, 2010, 27(10): 230-234.
[12] Shabana A A. Dynamics of multibody systems. New York: Cambridge University Press, 2005: 51-67.
[13] Zhang Y D, Wang Y T, Wang M N, et al. Co-simulation of flexible body based on ANSYS and ADAMS. Journal of System Simulation, 2008, 20(17): 4501-4504. (in Chinese) 张永德, 汪洋涛, 王沫楠, 等. 基于ANSYS 与ADAMS 的柔性体联合仿真. 系统仿真学报, 2008, 20(17): 4501-4504.
[14] Piras G, Cleghorn W L, Mills James K. Dynamic finite element analysis of a planar high speed, high precision parallel manipulator with flexible links. Mechanism and Machine Theory, 2005, 40(7): 849-862.
[15] Nie X T, Guo L D, Liu B L. Dynamics simulation and analysis of flexible nozzle in wind tunnel based on ADAMS. Journal of Experiments in Fluid Mechanics, 2011, 25(2): 73-76. (in Chinese) 聂旭涛, 郭隆德, 刘伯林. 基于ADAMS风洞柔壁喷管动力学仿真分析. 实验流体力学, 2011, 25(2): 73-76.
/
〈 | 〉 |