Fluid Mechanics and Flight Mechanics

Hybrid Optimization Approach Research for Low Sonic Boom Supersonic Aircraft Configuration

  • FENG Xiaoqiang ,
  • SONG Bifeng ,
  • LI Zhanke ,
  • SANG Jianhua
Expand
  • School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2012-09-20

  Revised date: 2012-12-31

  Online published: 2013-02-26

Supported by

Doctorate Foundation of Northwestern Polytechnical University (CX-201232)

Abstract

High fidelity sonic boom prediction and low sonic boom design methods are key technologies of next generation supersonic aircraft. By coupling a modified SGD (Seebass-George-Darden) method, a high fidelity sonic boom prediction method and a Pareto genetic algorithm, a hybrid optimizing approach is developed. The parameters of the SGD method are optimized and an equivalent area distribution with a lower sonic boom overpressure and large available volume can be obtained. By using the optimized equivalent area distribution, a low boom layout can be designed. A low sonic boom configuration mixed optimizing environment is developed, which integrates sonic boom analysis, perceived loudness analysis, available volume calculation and equivalent area distribution generation. The low sonic boom configuration mixed optimizing environment can be used in the conceptual design phase. The optimized layout is a joint wing configuration with a blunt nose. The sonic boom overpressure decreases by 14.51% and the available volume increases nearly 15.08%. Due to the different strengths of the after shock wave, the relationship between the PLdB and roll angle is complex. The after shock of the sonic boom should be optimized in future work for mitigating PLdB.

Cite this article

FENG Xiaoqiang , SONG Bifeng , LI Zhanke , SANG Jianhua . Hybrid Optimization Approach Research for Low Sonic Boom Supersonic Aircraft Configuration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(8) : 1768 -1777 . DOI: 10.7527/S1000-6893.2013.0057

References

[1] Menexiadis G. Long-range propagation of sonic boom form the concorde airliner: analyses and simulations. Journal of Aircraft, 2008, 45(5): 1612-1618.

[2] Seebass A R. Sonic boom theory. Journal of Aircraft, 1969, 6(13): 177-184.

[3] Kusunose K. A fundamental study for the development of boomless supersonic transport aircraft. AIAA-2006- 654, 2006.

[4] Li W, Shields E, Le D. Interactive inverse design optimization of fuselage shape for low-boom supersonic concepts. Journal of Aircraft, 2008, 45(4): 1381-1398.

[5] Howe D C. Development of the Gulfstream quiet spike for sonic boom minimization. AIAA-2008-124, 2008.

[6] Knight M. Quiet spike prototype morphing performance during flight test. AIAA-2008-127, 2008.

[7] Zi Z H, Lv Y L. Study of passive acoustic locating of supersonic multi-target. Computer Engineering and Applications, 2010, 46(10): 202-205. (in Chinese) 字正华, 吕永林.多超声速目标被动声定位技术研究.计算机工程与应用, 2010, 46(10): 202-205.

[8] Chen P, Li X D. Frequency domain method for predicting sonic boom propagation based on Khokhlov-Zabolotskaya-Kuznetsov equation. Journal of Aerospace Power, 2010, 25(2): 359-365.(in Chinese) 陈鹏,李晓东.基于Khokhlov-Zabolotskaya-Kuznetsov方程的声爆频域预测. 航空动力学报, 2010, 25(2): 359-365.

[9] Dan D. Supersonic business design based on request of sonic boom and takeoff/approaching acoustics. Chengdu: Chengdu Aircraft Research and Design Institute, 2010.(in Chinese) 但聃. 基于声爆和起降噪声要求的超音速公务机设计. 成都: 成都飞机设计研究所, 2010.

[10] Feng X Q, Li Z K, Song B F. Preliminary analysis on the sonic boom of supersonic aircraft. Flight Dynamics, 2010, 28(6): 21-27.(in Chinese) 冯晓强, 李占科, 宋笔锋. 超音速客机音爆问题初步研究. 飞行力学, 2010, 28(6): 21-27.

[11] Feng X Q, Li Z K, Song B F. A research on inverse design method of a lower sonic boom supersonic aircraft configuration. Acta Aeronautica et Astronautica Sinica, 2011, 32(11): 1980-1986.(in Chinese) 冯晓强, 李占科, 宋笔锋.超声速客机低音爆布局反设计技术研究. 航空学报, 2011, 32(11): 1980-1986.

[12] Feng X Q. The research of sonic boom prediction method and application in supersonic aircraft design. Xi'an: School of Aeronautics, Northwestern Polytechnical University, 2012.(in Chinese) 冯晓强. 声爆计算方法研究及在超声速客机设计的应用. 西安: 西北工业大学航空学院, 2012.

[13] Rallabhandi S. Sonic boom minimization through vehicle shape optimization and probabilistic acoustic propagation.Georgia Institute of Technology, 2005.

[14] Liang Y, Cheng X Q, Li Z N. Multi-object aerodynamic configuration parameter design using kriging approximation. Acta Aeronautica et Astronautica Sinica, 2010, 31(6): 1141-1148.(in Chinese) 梁煜, 程小全, 郦正能. 基于代理模型的气动外形平面参数多目标匹配设计.航空学报, 2010, 31(6): 1141-1148.

[15] Kalyanmoy D, Pratap A. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.

[16] Plotkin K J. State of the art of sonic boom modeling. Journal of Acoustical Society of America, 2002, 111(1): 530-536.

[17] Siclari M, Darden C. A euler code prediction of near to mid-field sonic boom pressure signature. AIAA-1990-4000, 1990.

[18] Thomas C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method. NASA TND-6832, 1972.

[19] Page J A. An efficient method for incorporating computational fluid dynamics into sonic boom prediction.AIAA-1991-53882, 1991.as C L. Extrapolation of sonic boom pressure signatures by the waveform parameter method[R]. NASA TND-6832, 1972.

[18] J.A.Page. An efficient method for incorporating computational fluid dynamics into sonic boom prediction[R].AIAA-1991-53882,1991.

[19] Stevens.S.S. Perceived level of noise by Mark VII and decibels. The Journal of the Acoustical Society of America,1972;51(2):575-601.

Outlines

/