ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Aero-engine Rotor-stator Rubbing Position Identification Based on Casing Strain Signals
Received date: 2012-05-29
Revised date: 2013-01-24
Online published: 2013-02-19
Supported by
National Natural Science Foundation of China (61179057); National Basic Research Program of China (613139)
In order to effectively identify aero-engine rotor-stator rubbing positions, an identification method based on casing strain signals is proposed. Two experiment projects are proposed and compared. One is to paste the strain foils along the casing axial direction, the other is to paste them along the casing circumference. A rotor experiment rig of an aero-engine is used to simulate rubbing faults of different radial rubbing positions. The casing strain signals of the rotor experiment rig of the aero-engine is collected and the strain mean features of the two experiment projects are extracted, which are then input into a support vector machine to identify the different rubbing positions. The results show that the strain mean features based on the experiment project which paste strain foils along the casing circumference can effectively identify the rotor-stator rubbing positions of the aero-engine, and the recognition can reach 100%. But the strain mean features based on the project which paste strain foils along the casing axial direction has a lower recognition rate.
YU Mingyue , CHEN Guo , LIU Yongquan , JIANG Guangyi , LI Chenggang , FENG Guoquan , WANG Deyou . Aero-engine Rotor-stator Rubbing Position Identification Based on Casing Strain Signals[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(6) : 1474 -1484 . DOI: 10.7527/S1000-6893.2013.0080
[1] Deng A D, Bao Y Q, Zhao L. Positioning of acoustic emission source by using sub-gradient projection based on energy attenuation model. Journal of Mechanical Engineering, 2010, 46(9): 66-72. (in Chinese) 邓艾东, 包永强, 赵力. 基于能量衰减模型的转子碰摩声发射源次梯度投影定位方法. 机械工程学报, 2010, 46(9): 66-72.
[2] Wang Q, Chu F.Experimental determination of the rubbing location by means of acoustic emission and wavelet transform. Journal of Sound and Vibration, 2001, 248(1): 91-103.
[3] Chu F L, Wang Q Y, Lu W X. Detective of the rub location in a rotor system with AE sensors and wavelet analysis. Journal of Mechanical Engineering, 2002, 38(3): 139-143. (in Chinese) 褚福磊, 王庆禹, 卢文秀.用声发射技术与小波包分解确定转子系统的碰摩位置. 机械工程学报, 2002, 38(3):139-143.
[4] He T, Liu Y G, Chen Y N, et al. Method for locating rub fault of rotor-stator based on acoustic emission beam forming. Journal of Aerospace Power, 2011, 26(10): 2207-2213. (in Chinese) 何田, 刘耀光, 陈亚农, 等. 基于声发射波束形成法的转静子碰摩故障定位. 航空动力学报, 2011, 26(10): 2207-2213.
[5] Han Q K, Yu T, Li H, et al. Hybrid model based identification of local rubbing fault in rotor systems. Key Engineering Materials, 2005, 293-294: 355-364.
[6] Bachschmid N, Pennacchi P, Vania A. Identification of multiple faults in rotor systems. Journal of Sound and Vibration, 2002, 254(2): 327-366.
[7] Chu F, Lu W. Determination of the rubbing location in a multi-disk rotor system by means of dynamic stiffness identification. Journal of Sound and Vibration, 2001, 248(2): 235-246.
[8] Kicinski J. Rotor dynamics. Gdansk: Institute of Fluid-flow Machinery, 2005.
[9] Sun Y L, Zhang Y X, Chang H B. Method of rotor rub-impact faults diagnosis based on stator vibration signal. Journal of Mechanical Engineering, 2009, 22(4): 391-394. (in Chinese) 孙云岭, 张永祥, 常汉宝. 基于定子振动的转子碰摩故障诊断方法研究. 机械工程学报, 2009, 22(4): 391-394.
[10] Duan S G, Liao M F. Dynamic strain measurement system in signal detection of mechanical vibration. Machinery Design & Manufacture, 2005(11): 97-99. (in Chinese) 段曙光, 廖明夫. 动应变测试系统在机械振动信号检测中的应用. 机械设计与制造, 2005(11): 97-99.
[11] Wang B X. Measurement technology foundation.Beijing: Tsinghua University Press, 2003. (in Chinese) 王伯雄. 测试技术基础. 北京: 清华大学出版社, 2003.
[12] Liu X D. The research of rotating machinery rotor-stator rubbing fault and diagnosis technology. Beijing: School of Transportation Science and Engineering, Beihang University, 1996. (in Chinese) 刘献栋. 旋转机械转静碰摩故障及其诊断技术的研究. 北京: 北京航空航天大学交通科学与工程学院, 1996.
[13] He T. Research on key issues in diagnosing rub-impact fault of rotating machinery. Beijing: School of Transportation Science and Engineering, Beihang University, 2008. (in Chinese) 何田. 旋转机械碰摩故障诊断关键问题研究. 北京: 北京航空航天大学交通科学与工程学院, 2008.
[14] Wang D Y. The vibration features extracted and theoretical research of engine rotor-stator rubbing. Beijing: School of Transportation Science and Engineering, Beihang University, 1995. (in Chinese) 王德友. 发动机转静件碰摩振动特性的提取与理论研究. 北京: 北京航空航天大学交通科学与工程学院, 1995.
[15] Chang C C, Lin C J. LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2011, 2(3): 27: 1-27: 27.
/
〈 | 〉 |