ACTA AERONAUTICAET ASTRONAUTICA SINICA >
Low Cost Preparation and Mechanical Property of Three-dimensional Needled C/SiC Bolts
Received date: 2012-08-30
Revised date: 2012-11-29
Online published: 2012-12-26
Supported by
National Natural Science Foundation of China (51032006,50820145202)
Semi-finished carbon/silicon carbide (C/SiC) composites plates with the density of 1.50-1.60 g/cm3 are prepared by chemical vapor infiltration (CVI) of the three-dimensional needled carbon fiber preform. Then, stud and head blank of bolts are cut and tapped by special abrasive tools according to certain sample location from composites plates. By assembling the stud and head into a whole, the semi-finished bolts are subsequently obtained. Finally, the bolts are densified and SiC coating is deposited on surface of them by CVI. So, low-cost 3D needled C/SiC composites bolts are prepared. The methods are proposed to evaluate mechanical properties of C/SiC composite bolts and the mechanical properties are measured by special clamps.The rupture morphology are observed and analyzed by scanning electron microscope (SEM).The results show that C/SiC composite bolts have better mechanical properties.The tensile strength and shear strength of C/SiC composite bolts are 151.7 MPa and 85.67 MPa respectively.
LIU Jie , LI Haibin , LIU Xiaoying . Low Cost Preparation and Mechanical Property of Three-dimensional Needled C/SiC Bolts[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(7) : 1724 -1730 . DOI: 10.7527/S1000-6893.2013.0287
[1] Naslain R. Design,preparation and properties of non-oxide CMCs for application in engines and nuclear reactors: an overview. Composites Science and Technology, 2004, 64(2): 155-170.
[2] Zhang L T, Cheng L F. Discussion on strategies of sustainable development of continuous fiber reinforced ceramic matrix composites. Acta Materiae Compositae Sinica, 2007, 24(2): 1-6. (in Chinese) 张立同, 成来飞. 连续纤维增韧陶瓷基复合材料可持续发展战略探讨. 复合材料学报, 2007, 24(2): 1-6.
[3] Zhang L T, Cheng L F, Xu Y D. Progress in research work of new CMC-SiC. Aeronautical Manufacturing Technology, 2003(1): 24-32. (in Chinese) 张立同, 成来飞, 徐永东. 新型碳化硅陶瓷基复合材料的研究进展. 航空制造技术, 2003(1): 24-32.
[4] Krenkel W, Berndt F. C/C-SiC composites for space applications and advanced friction systems. Materials Science and Engineering:A, 2005, 412(1-2): 177-181.
[5] Dixon D G. Ceramic matrix composite-metal brazed joints. Journal of Materials Science, 1995, 30(6): 1539-1544.
[6] Nakamura M. Joining of carbon fiber-reinforced silicon nitride composites with 2Ag-26Cu-2Ti filler metal. Journal of Material Science, 1996(31): 4629-4634.
[7] Henriksen A F. The nuts and bolts of ceramic fasteners. Journal of Machine Design, 2006, 78(11): 72-74.
[8] Wang J, Li K Z. Microstructure and mechanical properties of C/C composites bolts. Journal of Solid Rocket Technology, 2012, 35(2), 248-252. (in Chinese) 王杰, 李克智. 炭布叠层穿刺C/C 复合材料螺栓连接件微观组织和力学性能. 固体火箭技术, 2012, 35(2), 248-252.
[9] Dadras P, Ngai T T, Mehrotra G M. Joining of carbon-carbon composites using boron and titanium disilicide interlayers. Journal of the American Ceramic Society, 1997, 80(1), 125-132.
[10] Whale E. Ceramic fasteners for high temperature applications. Journal of Engineering Materials and Technology, 2000, 15(4): 276-281.
[11] Wan Y H. Preparation and mechanical properties for C/SiC composites and components. Xi’an: College of Materials Science and Engineering, Northwestern Polytechnical University, 2005. (in Chinese) 万玉慧. C/SiC复合材料及其构件的制备与力学性能. 西安: 西北工业大学材料科学与工程学院, 2005.
[12] Mei H, Cheng L F, Ke Q Q. High-temperature tensile properties and oxidation behavior of carbon fiber rein-forced silicon carbide bolts in a simulated re-entry environment. Carbon, 2010, 48(11), 3007-3013.
[13] Zhang L T. Fiber-reinforced silicon carbide ceramic composites:modeling, characterization and design. Beijing: Chemical Industry Press, 2009: 30-31. (in Chinese) 张立同. 纤维增韧碳化硅陶瓷复合材料:模拟、表征与设计. 北京: 化学工业出版社, 2009: 30-31.
[14] Guo Y J, Nie J J, Xu Y D, et al. Microstructure and mechanical properties of three-dimensional deedle C/SiC composite. Journal of the Chinese Ceramic Society, 2008, 36(2): 144-149.
[15] Liu J, Li H B, Zhang X Y, et al. Investigation of grinding characteristics and removal mechanisms of 2D-C/SiC in high speed deep grinding. Acta Materiae Compositae Sinica, 2012, 29(4):113-118. (in Chinese) 刘杰,李海滨,张小彦,等. 2D-C/SiC高速深磨磨削特性和去除机制. 复合材料学报, 2012, 29(4):113-118.
/
〈 |
|
〉 |