Electronics and Control

Fast DGPS Integer Ambiguity Resolution Using Adaptive Genetic Algorithm

  • XU Dingjie ,
  • LIU Mingkai ,
  • SHEN Feng ,
  • ZHU Liye
Expand
  • College of Automation, Harbin Engineering University, Harbin 150001, China

Received date: 2012-03-27

  Revised date: 2012-07-25

  Online published: 2012-08-09

Supported by

National Natural Science Foundation of China (61102107); China Postdoctoral Science Foundation (20100480979)

Abstract

In view of the advantage of genetic algorithm (GA) for searching global optimization results, an adaptive genetic algorithm (AGA) is applied to search difference global positioning system (DGPS) integer ambiguity to resolve the DGPS integer ambiguities rapidly and correctly in this paper. The global positioning system (GPS) carrier phase double-difference equations are used to resolve double-difference integer ambiguity float estimations, while the baseline length is to determine the integer ambiguity search range as a constraint. The white-filter algorithm is used to decorrelate the integer ambiguities and eliminate the correlation of each ambiguity float estimation. Finally the adaptive genetic algorithm is proposed to search the integer ambiguity optimization results. Numerical simulation results show that adaptive genetic algorithm can resolve rapidly the integer ambiguities, and that the results using adaptive genetic algorithm are more reliable and robust than those obtained by least-square ambiguity decorrelation adjustment (LAMBDA) and simple genetic algorithms.

Cite this article

XU Dingjie , LIU Mingkai , SHEN Feng , ZHU Liye . Fast DGPS Integer Ambiguity Resolution Using Adaptive Genetic Algorithm[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(2) : 371 -377 . DOI: 10.7527/S1000-6893.2013.0042

References

[1] Xie G. Principles of GPS and receiver desigin. Beijing: Publishing House of Electronics Industry, 2009: 72-74. (in Chinese) 谢钢. GPS原理与接收机设计. 北京: 电子工业出版社, 2009: 72-74.

[2] Teunissen P J G. The least-squares ambiguty decorrelation adjustment: a method for fast GPS integer ambiguity estimation. Journal of Geodesy, 1995, 70(1-2): 65-82.

[3] Teunissen P J G, de Jonge P J. Performance of the LAMBDA method for fast GPS ambiguity resolution. Navigation Journal of the Insitute of Navigation, 1997, 44(3): 373-383.

[4] de Jonge P, Tiberius C. The LAMBDA method for integer ambiguity estimation: implementation aspects. Delft Geodetic Computing Centre LGR Series, 1996, 12: 1-49.

[5] Tang W M, Sun H X, Liu J N. Ambiguity resolution of single epoch single frequency data with baseline length constraint using LAMBDA algorithm. Geomatics and Information Science of Wuhan University, 2005, 30(5): 444-446. (in Chinese) 唐卫明, 孙红星, 刘经南. 附有基线长度约束的单频数据单历元LAMBDA方法整周模糊度确定. 武汉大学学报: 信息科学版, 2005, 30(5): 444-446.

[6] Wang X P, Cao L M. The theory, application and software realization of genetic algorithm. Xi’an: Xi’an Jiaotong University Press, 2002: 18-38, 73-74. (in Chinese) 王小平, 曹立明. 遗传算法——理论、应用与软件实现. 西安: 西安交通大学出版社, 2002: 18-38, 73-74.

[7] Lei Y J, Zhang S W, Li X W, et al. MATLAB genetic algorithm toolbox and application. Xi’an: Xidian University Press, 2005: 45-61, 107-142. (in Chinese) 雷英杰, 张善文, 李续武, 等. MATLAB遗传算法工具箱及应用. 西安: 西安电子科技大学出版社, 2005: 45-61, 107-142.

[8] Yang N, Zhang J, Tian W F. Application of genetic algorithm in DGPS integer ambiguity resolution. Journal of System Simulation, 2005, 17(8): 2025-2032. (in Chinese) 杨宁, 张静, 田蔚风. 遗传算法在DGPS动态整周模糊度解算中应用. 系统仿真学报, 2005, 17(8): 2025-2032.

[9] Zheng Q H, Zhang Y L. OTF ambiguity resolution based on genetic algorithm. Journal of National University of Defense Technology, 2001, 23(3): 12-17.(in Chinese) 郑庆晖, 张育林. 基于遗传算法的整周模糊度OTF解算. 国防科技大学学报, 2001, 23(3): 12-17.

[10] Wang X, Xu B Y. Application of immune genetic algorithm based on autocorrelation theory in GPS ambiguity solution. 2011 International Conference on Mechatronic Science, Electric Engineering and Computer, 2011: 1571- 1574.

[11] Pan L, Fu L. Ambiguity resolution using genetic algorithm. Journal of Geomatics, 2004, 29(3): 26-29. (in Chinese) 潘雷, 富立. 基于遗传算法的整周模糊度解算方法.测绘信息与工程, 2004, 29(3): 26-29.

[12] Liu Z M, Liu J N, Jiang W P, et al. Ambiguity resolution of GPS short-baseline using genetic algorithm. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609, 631. (in Chinese) 刘智敏, 刘经南, 姜卫平, 等. 遗传算法解算GPS短基线整周模糊度的编码方法研究. 武汉大学学报: 信息科学版, 2006, 31(7): 607-609, 631.

[13] Liu Z M, Du Z X, Zou R. Application of the improved genetic algorithms with real code on GPS data processing. Proceedings of the Third International Conference on Natural Computation, 2007: 420-424.

[14] Liu Z M, Xiong W D, Kang Z Z, et al. GPS ambiguity resolution of single epoch data using genetic algorithms. Proceedings of the Sixth International Conference on Natural Computation, 2010: 2365-2368.

[15] Xing Z, Fan M. Ambiguity resolution based on improved genetic algorithm. Science of Surveying and Mapping, 2011, 36(3): 110-113. (in Chinese) 邢喆, 樊妙. 利用改进遗传算法求解整周模糊度. 测绘科学, 2011, 36(3): 110-113.

[16] Teunissen P J G. Integer least-squares theory for the GNSS compass. Journal of Geodesy, 2010, 84(7): 433-447.

Outlines

/