Electronics and Control

Robust Adaptive Control for Relative Motion of Spacecraft Under Input Saturation

  • WU Jinjie ,
  • LIU Kun ,
  • HAN Dapeng
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2012-05-23

  Revised date: 2012-07-17

  Online published: 2013-04-23

Supported by

National High Technology Research and Development Program of China (2011AA7026053)

Abstract

This paper investigates the integrated control of attitude and orbit for the relative motion of a spacecraft in the presence of input saturation constraint. First, using unit dual quaternion, a mathematic model of the six-degree-of-freedom relative motion for the spacecraft is introduced, and an error dual quaternion is adopted to describe the relative attitude and position of the spacecraft. Second, an adaptive controller, which is robust enough to model the uncertainties of the spacecraft and its bounded external disturbances, is proposed to deal with input saturation. Moreover, it is proved by a rigorous theoretical analysis of the Lyapunov method that the whole resulting closed-loop system is globally and asymptotically stable. Finally, numerical simulations are performed to demonstrate the validity and effectiveness of the presented approach. Compared with other approaches, the new one has the following properties: 1) control input saturation can be explicitly restrained; 2) faster convergence rate and improved robustness can be obtained.

Cite this article

WU Jinjie , LIU Kun , HAN Dapeng . Robust Adaptive Control for Relative Motion of Spacecraft Under Input Saturation[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013 , 34(4) : 890 -901 . DOI: 10.7527/S1000-6893.2013.0150

References

[1] Wu Y H, Cao X B, Zhang S J. et al. Relative orbit and attitude integrated coupled control for formation satellite. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(1): 13-20. (in Chinese) 吴云华, 曹喜滨, 张世杰, 等. 编队卫星相对轨道与姿态一体化耦合控制. 南京航空航天大学学报, 2010, 42(1): 13-20.

[2] Kristiansen R, Nicklasson P J, Gravdahl J T. Spacecraft coordination control in 6DOF: integrator backstepping vs passivity-based control. Automatica, 2008, 44(11): 2896-2901.

[3] Shan J. Six-degree-of-freedom synchronised adaptive learning control for spacecraft formation flying. IET Control Theory and Applications, 2008, 2(10): 930-949.

[4] Zhang F, Duan G R. Robust integrated translation and rotation finite-time maneuver of a rigid spacecraft based on dual quaternion. AIAA-2011-6396, 2011.

[5] Wang J Y, Liang H Z, Sun Z W. Dual number-based relative coupled dynamics and control. Journal of Astronautics, 2010, 31(7): 1711-1717. (in Chinese) 王剑颖, 梁海朝, 孙兆伟. 基于对偶数的相对耦合动力学与控制. 宇航学报, 2010, 31(7): 1711-1717.

[6] Wang J Y, Liang H Z, Sun Z W, et al. Relative motion coupled control based on dual quaternion. Aerospace Science and Technology, 2011. doi: 10.1016/j.ast.2011.12.013. (in press)

[7] Wang J Y, Sun Z W. 6-DOF robust adaptive terminal sliding mode control for spacecraft formation flying. Acta Astronautica, 2012, 73: 76-87. doi: 10.1016/ j.actaastro. 2011.12.005.

[8] Wu Y X, Hu X P, Hu D W, et al. Strapdown inertial navigation system algorithms based on dual quaternions. IEEE Transactions on Aerospace and Electronic System, 2005, 41(1): 110-132.

[9] Brodsky V, Shoham M. Dual numbers representation of rigid body dynamics. Mechanism and Machine Theory, 1999, 34(5): 693-718.

[10] Wang X K, Han D P, Yu C B, et al. The geometric structure of unit dual quaternion with application in kinematic control. Journal of Mathematical Analysis and Applications, 2012, 389(2): 1352-1364. doi: 10.1016/j.jmaa.2012.01.016.

[11] Cao X B, Wang F, Zhang S J. Model independent near eigenaxis rotation for spacecraft maneuver under slew rate and control constraints. Journal of Harbin Institute of Technology, 2006, 38(9): 1413-1418. (in Chinese) 曹喜滨, 王峰, 张世杰. 转速和控制力矩受限下模型独立的航天器拟欧拉姿态机动. 哈尔滨工业大学学报, 2006, 38(9): 1413-1418.

[12] Lü J T, Ma G F, Li C J. Output feedback controller design for satellite attitude regulation subject to control saturation. Journal of Astronautics, 2008, 29(4): 1320-1323. (in Chinese) 吕建婷, 马广富, 李传江. 考虑控制饱和的卫星姿态调节输出反馈控制器设计. 宇航学报, 2008, 29(4): 1320-1323.

[13] Liu S, Zhou L M. Static anti-windup control design for a class of saturated uncertain nonlinear systems. Control and Decision, 2009, 24(5): 764-768. (in Chinese) 刘胜, 周丽明. 一类饱和不确定非线性系统静态抗饱和控制设计. 控制与决策, 2009, 24(5): 764-768.

[14] Guo Y N, Li C J, Ma G F. Spacecraft autonomous attitude maneuver control by potential function method. Acta Aeronautica et Astronautica Sinica, 2011, 32(3): 457-464. (in Chinese) 郭延宁, 李传江, 马广富. 基于势函数法的航天器自主姿态机动控制. 航空学报, 2011, 32(3): 457-464.

[15] Robinett R D, Parker G G, Schaub H, et al. Lyapunov optimal saturated control for nonlinear systems. Journal of Guidance, Control, and Dynamics, 1997, 20(6): 1083-1088.

[16] Boskovic J D, Li S M, Mehra R K. Robust adaptive variable structure control of spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2001, 24(1): 14-22.

[17] Bang H, Tahk M J, Choi H D. Large angle attitude control of spacecraft with actuator saturation. Control Engineering Practice, 2003, 11(9): 989-997.

[18] Boskovic J D, Li S M, Mehra R K. Robust tracking control design for spacecraft under control input saturation. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 627-633.

[19] Wallsgrove R J, Akella M R. Globally stabilizing saturated attitude control in the presence of bounded unknown disturbances. Journal of Guidance, Control, and Dynamics, 2005, 28(5): 957-963.

[20] Akella M R, Valdivia A, Kotamraju G R. Velocity-free attitude controllers subject to actuator magnitude and rate saturations. Journal of Guidance, Control, and Dynamics, 2005, 28(4): 659-666.

[21] Khalil H K. Nonlinear systems. Upper Saddle River: Prentice-Hall, 1996: 113-120.

Outlines

/