Crashworthiness Optimization of Civil Aircraft Subfloor Structure

  • ZHENG Jianqiang ,
  • XIANG Jinwu ,
  • LUO Zhangping ,
  • REN Yiru
Expand
  • School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Received date: 2011-06-28

  Revised date: 2011-07-25

  Online published: 2012-04-20

Abstract

For a typical civil aircraft fuselage structural crashworthiness design with several design parameters, a design approach is proposed to minimize the peak acceleration of the cabin floor and maximize the internal energy of the structure at a certain crushing state. A Kriging surrogate model is adopted for impact response approximation, a nondominated sorting genetic algorithm II (NSGA-II) for dual objective optimization, and Nash-Pareto strategy for the optimum design selection. In order to obtain the effect of design parameters on crashworthiness as well as the optimum design, a synchronous sampling criterion of the maximum expected improvement and the maximum predicted variance is suggested to construct a surrogate model. Using this design approach, a typical civil aircraft fuselage structural design with the shape parameters of the cabin floor struts, cargo floor and foam components is studied as a design case. The results indicate that the peak acceleration of the cabin floor is reduced by about 18.3% as compared with the original design; the second-highest peak acceleration is also reduced. Consequently, the crashworthiness of the fuselage structure is improved. The error between the predicted responses of Kriging model and the analysis results of the finite element method is less than 1%, which illustrates the effectiveness of this design approach.

Cite this article

ZHENG Jianqiang , XIANG Jinwu , LUO Zhangping , REN Yiru . Crashworthiness Optimization of Civil Aircraft Subfloor Structure[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012 , (4) : 640 -649 . DOI: CNKI:11-1929/V.20111011.1411.006

References

[1] Zhang H, Wei R X. Crashworthiness design guide for general aircraft. Beijing: Aviation Industry Press, 2009: 1-18. (in Chinese) 张弘, 魏荣祥. 通用飞机抗坠撞设计指南. 北京: 航空工业出版社, 2009: 1-18.
[2] Civil Aviation Administration of China. CCAR-25-R3 China civil aviation rules: Vol. 25. Beijing: Civil Aviation Administration of China, 2001. (in Chinese) 中国民用航空总局. CCAR-25-R3 中国民用航空规章: 第25部. 北京: 中国民用航空总局, 2001.
[3] Federal Aviation Administration. Full-scale transport controlled impact demonstration program. NASA-TM-89642, 1987.
[4] Carden H D. Full-scale crash-test evaluation of two load-limiting subfloors for general aviation airframes. NASA-TP-2380, 1984.
[5] Castle C B, Alfaro-Bou E. Light airplane crash tests at three roll angles. NASA-TP-1477, 1979.
[6] Fasanella E L, Alfaro-Bou E, Hayduk R J. Impact data from a transport aircraft during a controlled impact demonstration. NASA-TP-2589, 1986.
[7] Ren Y R, Xiang J W. A comparative study of the crashworthiness of civil aircraft with different strut configurations. International Journal of Crashworthiness, 2010, 15(3): 321-330.
[8] Ren Y R, Xiang J W, Luo Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271-276. (in Chinese) 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响. 航空学报, 2010, 31(2): 271-276.
[9] Gong J J, Wang X W. Numerical simulation of energy absorption capability of composite waved beams. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 298-302. (in Chinese) 龚俊杰, 王鑫伟. 复合材料波纹梁吸能能力的数值模拟. 航空学报, 2005, 26(3): 298-302.
[10] Liu R T, Wang X W, Jia S P. Experimental study on energy absorption of carbon-epoxy waved beams. Acta Aeronautica et Astronautica Sinica, 2001, 22(1): 56-61. (in Chinese) 刘瑞同, 王鑫伟, 荚淑萍. 碳纤维-环氧树脂波纹梁吸能能力的试验研究. 航空学报, 2001, 22(1): 56-61.
[11] Zheng J Q, Xiang J W, Luo Z P, et al. Crashworthiness layout of civil aircraft using waved-plate for energy absorption. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1396-1402. (in Chinese) 郑建强, 向锦武, 罗漳平, 等. 民机机身耐撞性设计的波纹板布局. 航空学报, 2010, 31(7): 1396-1402.
[12] He H, Chen G P, Zhang J B. Crash simulation of fuselage section with fuel tank. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 627-633. (in Chinese) 何欢, 陈国平, 张家滨. 带油箱结构的机身框段坠撞仿真分析. 航空学报, 2008, 29(3): 627-633.
[13] Meng F X, Zhou Q, Yang J L. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage. International Journal of Crashworthiness, 2009, 14(1): 83-97.
[14] Liao X, Li Q, Yang X J, et al. A two-stage multi-objective optimization of vehicle crashworthiness under frontal impact. International Journal of Crashworthiness, 2008, 13(3): 279-288.
[15] Craig K J, Stander N, Dooge D A, et al. Automotive crashworthiness design using response surface-based variable screening and optimization. Engineering Computations, 2005, 22(1): 38-61.
[16] Wang H L, Lin Z Q, Jin X L. Optimal design of thin-walled sections for structural crashworthiness based on the response surface model. Chinese Journal of Applied Mechanics, 2003, 20(3): 61-65. (in Chinese) 王海亮, 林忠钦, 金先龙. 基于响应面模型的薄壁构件耐撞性优化设计. 应用力学学报, 2003, 20(3): 61-65.
[17] Forsberg J, Nilsson L. On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness. Structural and Multidisciplinary Optimization, 2005, 29(3): 232-243.
[18] Wang B G, Liu S Y, Li X, et al. Two improved algorithms based on Nash-Pareto strategy and their applications. Journal of Aerospace Power, 2008, 23(2): 374-382. (in Chinese) 王保国, 刘淑艳, 李翔, 等. 基于Nash-Pareto策略的两种改进算法及其应用. 航空动力学报, 2008, 23(2): 374-382.
[19] Jackson K E, Fasanella E L, Kellas S. Development of a scale model composite fuselage concept for improved crashworthiness. Journal of Aircraft, 2001, 38(1): 95-103.
[20] Jackson K E. Impact testing and simulation of a crashworthy composite fuselage concept. International Journal of Crashworthiness, 2001, 6(1): 107-121.
[21] Mu X F, Yao W X, Yu X Q, et al. A survey of surrogate models used in MDO. Chinese Journal of Computational Mechanics, 2005, 22(5): 608-612. (in Chinese) 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究. 计算力学学报, 2005, 22(5): 608-612.
[22] Gao Y H. Optimization methods based on Kriging surrogate model and their application in injection molding. Dalian: Dalian University of Technology, 2009. (in Chinese) 高月华. 基于Kriging代理模型的优化设计方法及其在注塑成型中的应用. 大连: 大连理工大学, 2009.
[23] Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998, 13(4): 455-492.
[24] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[25] Adams A, Lankarani H M. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness. International Journal of Crashworthiness, 2003, 8(4): 401-413.
[26] Kumakura I, Minegishi M, Iwasaki K. Impact simulation of simplified structural models of aircraft fuselage. 2000 World Aviation Conference. 2000.
[27] Byar A. Crashworthiness study of a Boeing 737 fuselage. Philadelphia: Drexel University, 2004.
[28] He H. Key technology of general aircraft crash simulation and crashworthiness design. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) 何欢. 通用飞机结构耐撞性分析与设计关键技术研究. 南京: 南京航空航天大学航空宇航学院, 2007.
[29] Lophaven S N, Nielsen H B, Sndergaard J. DACE: a MATLAB Kriging toolbox. Technical Report IMM-TR-2002-12. Denmark: Technical University of Denmark, 2002.
[30] Aslett R, Buck R J, Duvall S G, et al. Circuit optimization via sequential computer experiments: design of an output buffer. Journal of the Royal Statistical Society: Series C, Applied Statistics, 1998, 47(1): 31-48.
Outlines

/