[1] Zhang H, Wei R X. Crashworthiness design guide for general aircraft. Beijing: Aviation Industry Press, 2009: 1-18. (in Chinese) 张弘, 魏荣祥. 通用飞机抗坠撞设计指南. 北京: 航空工业出版社, 2009: 1-18.
[2] Civil Aviation Administration of China. CCAR-25-R3 China civil aviation rules: Vol. 25. Beijing: Civil Aviation Administration of China, 2001. (in Chinese) 中国民用航空总局. CCAR-25-R3 中国民用航空规章: 第25部. 北京: 中国民用航空总局, 2001.
[3] Federal Aviation Administration. Full-scale transport controlled impact demonstration program. NASA-TM-89642, 1987.
[4] Carden H D. Full-scale crash-test evaluation of two load-limiting subfloors for general aviation airframes. NASA-TP-2380, 1984.
[5] Castle C B, Alfaro-Bou E. Light airplane crash tests at three roll angles. NASA-TP-1477, 1979.
[6] Fasanella E L, Alfaro-Bou E, Hayduk R J. Impact data from a transport aircraft during a controlled impact demonstration. NASA-TP-2589, 1986.
[7] Ren Y R, Xiang J W. A comparative study of the crashworthiness of civil aircraft with different strut configurations. International Journal of Crashworthiness, 2010, 15(3): 321-330.
[8] Ren Y R, Xiang J W, Luo Z P, et al. Effect of cabin-floor oblique strut on crashworthiness of typical civil aircraft fuselage section. Acta Aeronautica et Astronautica Sinica, 2010, 31(2): 271-276. (in Chinese) 任毅如, 向锦武, 罗漳平, 等. 客舱地板斜撑杆对民机典型机身段耐撞性能的影响. 航空学报, 2010, 31(2): 271-276.
[9] Gong J J, Wang X W. Numerical simulation of energy absorption capability of composite waved beams. Acta Aeronautica et Astronautica Sinica, 2005, 26(3): 298-302. (in Chinese) 龚俊杰, 王鑫伟. 复合材料波纹梁吸能能力的数值模拟. 航空学报, 2005, 26(3): 298-302.
[10] Liu R T, Wang X W, Jia S P. Experimental study on energy absorption of carbon-epoxy waved beams. Acta Aeronautica et Astronautica Sinica, 2001, 22(1): 56-61. (in Chinese) 刘瑞同, 王鑫伟, 荚淑萍. 碳纤维-环氧树脂波纹梁吸能能力的试验研究. 航空学报, 2001, 22(1): 56-61.
[11] Zheng J Q, Xiang J W, Luo Z P, et al. Crashworthiness layout of civil aircraft using waved-plate for energy absorption. Acta Aeronautica et Astronautica Sinica, 2010, 31(7): 1396-1402. (in Chinese) 郑建强, 向锦武, 罗漳平, 等. 民机机身耐撞性设计的波纹板布局. 航空学报, 2010, 31(7): 1396-1402.
[12] He H, Chen G P, Zhang J B. Crash simulation of fuselage section with fuel tank. Acta Aeronautica et Astronautica Sinica, 2008, 29(3): 627-633. (in Chinese) 何欢, 陈国平, 张家滨. 带油箱结构的机身框段坠撞仿真分析. 航空学报, 2008, 29(3): 627-633.
[13] Meng F X, Zhou Q, Yang J L. Improvement of crashworthiness behaviour for simplified structural models of aircraft fuselage. International Journal of Crashworthiness, 2009, 14(1): 83-97.
[14] Liao X, Li Q, Yang X J, et al. A two-stage multi-objective optimization of vehicle crashworthiness under frontal impact. International Journal of Crashworthiness, 2008, 13(3): 279-288.
[15] Craig K J, Stander N, Dooge D A, et al. Automotive crashworthiness design using response surface-based variable screening and optimization. Engineering Computations, 2005, 22(1): 38-61.
[16] Wang H L, Lin Z Q, Jin X L. Optimal design of thin-walled sections for structural crashworthiness based on the response surface model. Chinese Journal of Applied Mechanics, 2003, 20(3): 61-65. (in Chinese) 王海亮, 林忠钦, 金先龙. 基于响应面模型的薄壁构件耐撞性优化设计. 应用力学学报, 2003, 20(3): 61-65.
[17] Forsberg J, Nilsson L. On polynomial response surfaces and Kriging for use in structural optimization of crashworthiness. Structural and Multidisciplinary Optimization, 2005, 29(3): 232-243.
[18] Wang B G, Liu S Y, Li X, et al. Two improved algorithms based on Nash-Pareto strategy and their applications. Journal of Aerospace Power, 2008, 23(2): 374-382. (in Chinese) 王保国, 刘淑艳, 李翔, 等. 基于Nash-Pareto策略的两种改进算法及其应用. 航空动力学报, 2008, 23(2): 374-382.
[19] Jackson K E, Fasanella E L, Kellas S. Development of a scale model composite fuselage concept for improved crashworthiness. Journal of Aircraft, 2001, 38(1): 95-103.
[20] Jackson K E. Impact testing and simulation of a crashworthy composite fuselage concept. International Journal of Crashworthiness, 2001, 6(1): 107-121.
[21] Mu X F, Yao W X, Yu X Q, et al. A survey of surrogate models used in MDO. Chinese Journal of Computational Mechanics, 2005, 22(5): 608-612. (in Chinese) 穆雪峰, 姚卫星, 余雄庆, 等. 多学科设计优化中常用代理模型的研究. 计算力学学报, 2005, 22(5): 608-612.
[22] Gao Y H. Optimization methods based on Kriging surrogate model and their application in injection molding. Dalian: Dalian University of Technology, 2009. (in Chinese) 高月华. 基于Kriging代理模型的优化设计方法及其在注塑成型中的应用. 大连: 大连理工大学, 2009.
[23] Jones D R, Schonlau M, Welch W J. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 1998, 13(4): 455-492.
[24] Deb K, Pratap A, Agarwal S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[25] Adams A, Lankarani H M. A modern aerospace modeling approach for evaluation of aircraft fuselage crashworthiness. International Journal of Crashworthiness, 2003, 8(4): 401-413.
[26] Kumakura I, Minegishi M, Iwasaki K. Impact simulation of simplified structural models of aircraft fuselage. 2000 World Aviation Conference. 2000.
[27] Byar A. Crashworthiness study of a Boeing 737 fuselage. Philadelphia: Drexel University, 2004.
[28] He H. Key technology of general aircraft crash simulation and crashworthiness design. Nanjing: College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, 2007. (in Chinese) 何欢. 通用飞机结构耐撞性分析与设计关键技术研究. 南京: 南京航空航天大学航空宇航学院, 2007.
[29] Lophaven S N, Nielsen H B, Sndergaard J. DACE: a MATLAB Kriging toolbox. Technical Report IMM-TR-2002-12. Denmark: Technical University of Denmark, 2002.
[30] Aslett R, Buck R J, Duvall S G, et al. Circuit optimization via sequential computer experiments: design of an output buffer. Journal of the Royal Statistical Society: Series C, Applied Statistics, 1998, 47(1): 31-48.