Due to the geometry characteristics, the microstructure of different directional solidification (DS) blade regions is different during the solidification process, which suggests that the mechanical properties may also show variation among these regions. Three types of DS specimens (platform-like, shroud-like and notched) are designed to investigate the differences through high temperature low cycle fatigue tests. Tests results show that the fatigue performances of the shroud-like specimen and the platform-like specimen are respectively 7.68% and 5.93% those of the notched specimen. Therefore, the difference of fatigue property among different regions on a DS turbine blade should be considered in blade structure design and fatigue life prediction. The research results may also help to improve the fabrication processes of directional turbine blade solidification.
YAN Xiaojun, DENG Ying, SUN Ruijie, XIE Jianwen
. Study of Fatigue Property Variation at Different Regions on a DS Turbine Blade[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(10)
: 1930
-1936
.
DOI: CNKI:11-1929/V.20110427.1600.004
[1] 陈荣章. 航空铸造涡轮叶片合金和工艺发展的回顾与展望[J]. 航空制造技术, 2002(2): 18-24. Chen Rongzhang. Review and prospect of developments of cast superalloys and technology of aeroengine turbine blade [J]. Aeronautical Manufacturing Technology, 2002(2): 18-24. (in Chinese)
[2] Harris K, Erickson G L, Schwer R E. Directionally solidified and single crystal superalloys [M]. New York: ASM International, 1990: 995-1006.
[3] Yang X L, Dong H B, Wang W, et al. Microscale simulation of stray grain formation in investment cast turbine blades [J]. Materials Science and Engineering A, 2004, 386(1-2): 129-139.
[4] Sun R J, Yan X J, Deng Y, et al. Microstructure simulation of blade-Like specimens during directional solidification //Proceedings of 2nd ISJPPE. 2008: 280-284.
[5] Wang W, Kermanpur A, Lee P D, et al. Simulation of dendritic growth in the platform region of single crystal superalloy turbine blades [J]. Journal of Materials Science, 2003, 38(21): 4385-4391.
[6] Wang W, Lee P D, McLean M. A model of solidification microstructures in nickel-based superalloys: predicting primary dendrite spacing selection [J]. Acta Materialia, 2003, 51(10): 2971-2987.
[7] 孙瑞杰, 闫晓军, 聂景旭. 定向凝固涡轮叶片高温低周疲劳的破坏特点[J]. 航空学报, 2011, 32(2): 337-343. Sun Ruijie, Yan Xiaojun, Nie Jingxu. Failure characteristics of directional solidification turbine blade under high temperature low cycle fatigue load [J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2): 337-343.(in Chinese)
[8] 冯广召, 沈军, 邹敏佳, 等. 抽拉速度对高温合金DZ125定向凝固中缩松的影响[J]. 铸造, 2009, 58(5): 427-430. Feng Guangzhao, Shen Jun, Zou Minjia, et al. Influence of withdrawal rate on the micro-porosity of superalloy DZ125 in directional solidification [J]. Foundry, 2009, 58(5): 427-430. (in Chinese)
[9] 岳珠峰, 吕震宙, 杨治国, 等. 晶体取向的偏差和随机性对镍基单晶叶片强度与疲劳寿命的影响[J]. 航空动力学报, 2003, 18(4): 477-480. Yue Zhufeng, Lu Zhenzhou, Yang Zhiguo, et al. Influence of deviation and randomness of crystallographic orientations on the strength and life of nickel-base single crystal superalloy turbine blades [J]. Journal of Aerospace Power, 2003, 18(4): 477-480. (in Chinese)
[10] Arakere N K, Swanson G. Effect of crystal orientation on fatigue failure of single crystal nickel base turbine blade superalloys [J]. Journal of Engineering for Gas Turbines and Power, 2002, 124(1): 161-176.
[11] Zhao Y, Wang L, Li H Y, et al. Effects of recrystallization on the low cycle fatigue behavior of directionally solidified superalloy DZ40M [J]. Rare Metals, 2008, 27(4): 425-428.
[12] Alexandre F, Deyber S, Pineau A. Modelling the optimum grain size on the low cycle fatigue life of a Ni based superalloy in the presence of two possible crack initiation sites [J]. Scripta Materialia, 2004, 50(1): 25-30.
[13] Marahleh G, Kheder A R I, Hamad H F. Creep life prediction of service-exposed turbine blades [J]. Materials Science and Engineering A, 2006, 433(1-2): 305-309.
[14] Yue Z F, Lu Z Z, Zheng C Q. et al. Life study of nickel-based single crystal turbine blades: viscoplastic ctrystallographic constitutive behavior [J]. Theoretical and Applied Fracture Mechanics, 1996, 24(2): 139-145.
[15] Chen L J, Liu Y H, Xie L Y. Power-exponent function model for low-cycle fatigue life prediction and its applications [J]. International Journal of Fatigue, 2007, 29(1): 1-9.