To improve the aero-generator life prediction accuracy, an optimized auto-regressive and moving average (ARMA) model based on the genetic algorithm(GA) is presented. A specific experimental platform is used to perform long-term life prediction experiments on a certain type of aero-generator and collect the related test data. After a thorough analysis of these test data, a corresponding ARMA model is designed, and the genetic algorithm is used to carry on the exponent number optimization of the model. Then the original and the optimized ARMA models are used respectively to conduct life prediction research on the service life of the aero-generator. The result shows that these two models can realize the function of predicting the service life of an aero-generator. The average relative prognostic error of the ARMA model after the optimization is 2.26%, which is less than 4.33%, the error of the original model without optimization. Thus a conclusion can be drawn that the optimized ARMA model can predict the service life of an aero-generator more accurately and this model may find wide application in engineering practice.
CUI Jianguo, ZHAO Yunlong, DONG Shiliang, ZHANG Hongmei, CHEN Xicheng
. Life Prognostics for Aero-generator Based on Genetic Algorithm and ARMA Model[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(8)
: 1506
-1511
.
DOI: CNKI:11-1929/V.20110324.1201.008
[1] 孙博, 康锐, 张叔农. 基于特征参数趋势进化的故障诊断和预测方法[J]. 航空学报, 2008, 29(2): 393-398. Sun Bo, Kang Rui, Zhang Shunong. An approach to diagnostics and prognostics based on evolutionary feature parameters[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(2): 393-398. (in Chinese)
[2] Ly C, Tom K, Byington C S, et al. Fault diagnosis and failure prognosis for engineering systems: a global perspective//5th Annual IEEE Conference on Automation Science and Engineering. 2009: 108-115.
[3] Carlo G. Subset ARMA model identification using genetic algorithms[J]. Journal of Time Series Analysis, 2000, 21(5): 559-570.
[4] 高海龙, 张国立. 基于遗传神经网络的负荷预测方法[J]. 微计算机信息, 2009, 25(9-1): 189-190. Gao Hailong, Zhang Guoli. A load forecasting method based on GNN[J]. Microcomputer Information, 2009, 25(9-1): 189-190. (in Chinese)
[5] Goldberg D. Genetic algorithms in search optimization and machine learning[M]. MA: Addison-Wesley, 1989.
[6] Saqlain A, He L S. Optimization and sizing for propulsion system of liquid rocket using genetic algorithm[J]. Chinese Journal of Aeronautics, 2007(20): 40-46.
[7] Ives A, Abbott K C, Ziebarth N L. Analysis of ecological time series with ARMA(p,q) model[J]. Ecology, 2010, 91(3): 858-871.
[8] 韩路跃, 杜行检. 基于MATLAB的时间序列建模与预测[J]. 计算机仿真, 2005, 22(4): 105-107. Han Luyue, Du Xingjian. Modeling and prediction of time series based on MATLAB[J]. Computer Simulation, 2005, 22(4): 105-107. (in Chinese)
[9] Zhao S T, Pan L L, Li B S. Fault diagnosis and trend forecast of transformer based on acoustic recognition//The third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies. 2008: 1371-1374.
[10] 何书元. 应用时间序列分析[M]. 北京: 北京大学出版社, 2003年. He Shuyuan. Applied time series analysis[M]. Beijing: Peking University Press, 2003. (in Chinese)
[11] Mohammadi K, Eslami H R, Kahawita R. Parameter estimation of an ARMA model for river flow forecasting using goal programming[J]. Journal of Hydrology, 2006, 331(1-2): 293-299.
[12] Song S K, Gorla N. A genetic algorithm for vertical fragmentation and access path selection[J]. The computer Journal, 2000, 43(1): 81-92.
[13] Wang S H, He R. A hybrid real-parameter genetic algorithm for function optimization[J]. Advanced Engineering Informatics, 2006, 20(1): 7-21.
[14] Han K H, Kim J H. On setting the parameters of quant urn-inspired evolutionary algorithm for practical applications//Proceedings of the 2003 IEEE Congress on Evolutionary Computation. 2003: 178-184.
[15] 周玉辉, 康锐. 基于退化失效模型的旋转机械寿命预测方 法[J]. 核科学与工程, 2009, 29(2): 146-151. Zhou Yuhui, Kang Rui. Degradation model and application in life prediction of rotating-mechanism[J]. Chinese Journal of Nuclear Science and Engineering, 2009, 29(2): 146-151. (in Chinese)