The generalized strain energy damage function (GSEDF) model for low cycle fatigue-creep (LCF-C) is investigated, and by using the inelastic strain energy as an LCF damage parameter, an improved GSEDF model is proposed for high temperature low cycle fatigue-creep life prediction of high temperature components, which modifies the energy parameter in GSEDF model and is more consistent with the actual engineering than the GSEDF model. The proposed model has the advantage of less parameters in the expression of this model, wide application and higher utilization efficiency of experimental data.Furthermore, this model not only considers the mechanism of loading waveform and hold time, but also the mean stress effects on LCF life. The predicted fatigue lives based on the proposed model are found in good agreement with reported experimental results of aircraft turbine disk alloys GH4133 at different temperatures and strain (stress) ratios. Compared with the GSEDF model, the SWT model, the plastic strain energy density method and the strain energy frequency modified approach, the proposed model is widely applicable and more precise in predicting the life of low cycle fatigue-creep interaction.
ZHU Shunpeng, HUANG Hongzhong, HE Liping, HOU Minjie, ZHOU Lewang
. Improved Generalized Strain Energy Damage Function Method for High Temperature Low Cycle Fatigue-creep[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(8)
: 1445
-1452
.
DOI: CNKI:11-1929/V.20110509.1152.002
[1] 张俊善. 材料的高温变形与断裂[M]. 北京: 科学出版社, 2007: 425-430. Zhang Junshan. High temperature deformation and fracture of materials[M]. Beijing: Science Press, 2007: 425-430. (in Chinese)
[2] 尹泽勇. 航空发动机设计手册: 第18册, 叶片轮盘及主轴强度分析[M]. 北京:航空工业出版社, 2007: 807-821. Yin Zeyong. Manual for design of turbo engine: Book 18, strength analysis of turbine disk and shaft[M]. Beijing: Aviation Industry Press, 2007: 807-821. (in Chinese)
[3] Ostergren W J. A damage foundation hold time and frequency effects in elevated temperature low cycle fatigue[J]. Journal of Testing and Evaluation, 1967(4): 327-339.
[4] Koh S K. Fatigue damage evaluation of a high pressure tube steel using cyclic strain energy density[J]. International Journal of Pressure Vessels and Piping, 2002, 79(12): 791-798.
[5] Wang Y L. A generalized frequency modified damage function model for high temperature low cycle fatigue life prediction[J]. International Journal of Fatigue, 1997, 19(4): 345-350.
[6] Goswami T. Low cycle fatigue life prediction—a new model[J]. International Journal of Fatigue, 1997, 19(2): 109-115.
[7] Lee K O, Hong S G, Lee S B. A new energy-based damage parameter in life prediction of high-temperature structural materials[J]. Materials Science and Engineering: A, 2008, 496(1-2): 471-477.
[8] Zhu S P, Huang H Z. A generalized frequency separation-strain energy damage function model for low cycle fatigue-creep life prediction[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 33(4): 227-237.
[9] Payten W M, Dean D W, Snowden K U. A strain energy density method for the prediction of creep-fatigue damage in high temperature components[J]. Materials Science and Engineering: A, 2010, 527(7-8): 1920-1925.
[10] Maurel V, Remy L, Dahmen F, et al. An engineering model for low cycle fatigue life based on a partition of energy and micro-crack growth[J]. International Journal of Fatigue, 2009, 31(5): 952-961.
[11] Zhu S P, Sun R, Huang H Z, et al. A new life prediction model based on ductility exhaustion theory for high temperature low cycle fatigue of turbine disk alloys//Proceedings of the ASME International Design Engineering Technical Conference. 2010.
[12] 张国栋, 苏彬. 高温低周应变疲劳的三参数幂函数能量方法研究[J]. 航空学报, 2007, 28(2): 314-318. Zhang Guodong, Su Bin. A method based on energy and three-parameter power function for low cycle fatigue[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2): 314-318. (in Chinese)
[13] Smith K N, Watson P, Topper T H. A stress-strain function for the fatigue of metals[J]. Journal of Materials, 1970, 5(4): 767-778.
[14] 王卫国. 轮盘低循环疲劳寿命预测模型和试验评估方法研究. 南京: 南京航空航天大学能源与动力学院, 2006. Wang Weiguo. Research on prediction model for disc LCF life and experiment assessment methodology. Nanjing: College of Energy & Power Engineering, Nanjing University of Aeronautics and Astronautics, 2006. (in Chinese)
[15] Fan Z C, Chen X D, Chen L, et al. Fatigue-creep beha-vior of 1.25Cr0.5Mo steel at high temperature and its life prediction[J]. International Journal of Fatigue, 2007, 29(6): 1174-1183.
[16] Chen L, Jiang J L, Fan Z C, et al. A new model for life prediction of fatigue-creep interaction[J]. International Journal of Fatigue, 2007, 29(4): 615-619.
[17] Pineau A, Antolovich S D. High temperature fatigue of nickel-base superalloys: a review with special emphasis on deformation modes and oxidation[J]. Engineering Failure Analysis, 2009, 16(8): 2668-2697.
[18] Goswami T. Low cycle fatigue-dwell effects and damage mechanism[J]. International Journal of Fatigue, 1999, 21(1): 55-76.
[19] 范志超, 陈学东, 陈凌, 等. 基于延性耗竭理论的疲劳蠕变寿命预测方法[J]. 金属学报, 2006, 42(4): 415-420. Fan Zhichao, Chen Xuedong, Chen Ling, et al. Prediction method of fatigue-creep interaction life based on ductility exhaustion theory[J]. Acta Metallurgica Sinica, 2006, 42(4): 415-420. (in Chinese)