In order to perform magenetohydrodynamic (MHD) technical experiments, the experimental system needs to meet the following two conditions: one is supersonic or hypersonic flow; the other is that the flow must be conductivity. In this paper, basic composition, design methods, and debugging situation of a supersonic MHD technical experimental system based on shock tunnel are introduced. Mach number Ma=2 supersonic nozzle and testing section are designed; helium is used to drive argon gas, equilibrium contact surface operating mode is used for getting high temperature gas, and the conductive gas is obtained by adding ionization seed K2CO3 powder to the driven section. The following results are obtained: the effective testing time is about 9 ms by adjusting the length of driver section and driven section; the temperature in the 5th zone reaches over 3 500 K; due to short-time running, cooling problem of the nozzle and working section can be ignored; the conductivity of Ma=2 supersonic flow is 40 S/m, the magnetic interaction parameter Q is 0.174 under the conditions of p1=3 kPa, L=0.2 m and B=2.0 T realized by electromagnet, while Q is 0.164 when p1=1 kPa, L=1 m and B=0.5 T using permanent magnet. This experimental system could be used to perform preliminary experimental researches such as MHD flow control, MHD power generation and MHD acceleration.
LI Yiwen, LI Yinghong, ZHANG Bailing, JIN Di, CHEN Feng, ZHU Tao
. Supersonic Magnetohydrodynamic Technical Experimental System Based on Shock Tunnel[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011
, 32(6)
: 1015
-1024
.
DOI: CNKI:11-1929/V.20110427.1600.002
[1] Chapman J, Schmidt H, Ruoff R, et al. Flight weight magnets for space application using carbon nanotubes. AIAA-2003-330, 2003.
[2] Chase R L, Boyd D R, Czysz D P, et al. An AJAX technology advanced SSTO design concept. AIAA-1998-5527, 1998.
[3] Gurijanov E P, Harsha P T. AJAX: new directions in hypersonic technology. AIAA-1996-4609, 1996.
[4] Kopchenov V, Vatazhin A, Gouskov O. Estimation of possibility of use of MHD control in scramjet. AIAA-1999-4971, 1999.
[5] Lapushkina T A, Poniaev S A, Vasil-eva R V, et al. Experiments on MHD control of attached shocks in diffuse. AIAA-2003-169, 2003.
[6] Bobashev S V, Mende N P, Sakharov V A, et al. MHD control of the separation phenomenon in a supersonic xenon plasma flow. AIAA-2003-168, 2003.
[7] Sheikin E G, Kuranov A L. Scramjet with MHD bypass under "AJAX" concept. AIAA-2004-1192, 2004.
[8] Ramon L C, Unmeel B M, David W B. Comments on MHD energy bypass engine powered spaceliner. AIAA-1999-4975, 1999.
[9] Lineberry J T, Begg L L, Castro J H, et al. HVEPS scramjet-driven MHD power demonstration test results. AIAA-2007-3880, 2007.
[10] Moeller T, Robert R, Lineberry J T, et al. HVEPS combustion driven MHD power demonstration tests. AIAA-2008-4097, 2008.
[11] Murakami T, Okuno Y. High-performance nonequilibrium-plasma magnetohydrodynamic electrical power generator using slightly divergent channel configuration: II. experimental [J]. Journal of Physics D: Applied Physics, 2008, 41(12): 125212-125224.
[12] Macheret S O, Shneider M N, Miles R B. Electron beam generated plasmas in hypersonic MHD channels[J]. AIAA Journal, 2001, 39(6): 1127-1138.
[13] Nishihara M, Rich J W, Lempert W R, et al. Low-temperature M=3 flow deceleration by lorentz force. AIAA-2006-1004, 2006.
[14] Bobashev S V, Erofeev A V, Lapushkina T A, et al. Air plasma produced by gas discharge in supersonic MHD channel. AIAA-2006-1373, 2006.
[15] Shibkov V M, Abramova A D, Chernikov A V, et al. Microwave discharges in supersonic plasma aerodynamics. AIAA-2004-513, 2004.
[16] Borghi C A, Carraro M R, Cristofolini A, et al. Magnetohydrodynamic interaction in the shock layer of a wedge in a hypersonic flow[J]. IEEE Transactions on Plasma Science, 2006, 34(5): 2450-2463.
[17] 吕浩宇. 高超声速乘波构型飞行器磁流体进气道一体化研究. 北京: 北京航空航天大学, 2008. Lu Haoyu, Conceptual study on integrated design of airframe/MHD bypass scramjet for a waverider- based hypersonic vehicle. Beijing: Beihang University, 2008.(in Chinese)
[18] 于达仁, 唐井峰, 鲍文. 用于高超声速推进的MHD-Arc-Ramjet联合循环[J]. 航空学报, 2007, 28(4): 769-775. Yu Daren, Tang Jingfeng, Bao Wen. MHD-arc-ramjet combined cycle for hypersonic propulsion [J]. Acta Aero- nautica et Astronautica Sinica, 2007, 28(4): 769-775.(in Chinese)
[19] Su C B, Li Y H, Chen B Q, et al. Experimental investigation of MHD flow control for the oblique shock wave around the ramp in low-temperature supersonic flow[J]. Chinese Journal of Aeronautics, 2010, 22(1): 22-32.
[20] 王健, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的实验研究[J]. 航空学报, 2009, 30(8): 1374-1379. Wang Jian, Li Yinghong, Chen Bangqing, et al. Experimental investigation on shock wave control by plasma aerodynamic actuation[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8): 1374-1379.(in Chinese)
[21] 王健, 李应红, 程邦勤, 等. 等离子体气动激励控制激波的机理研究[J]. 物理学报, 2009, 58(8): 5513-5519. Wang Jian, Li Yinghong, Chen Bangqing, et al. Mechanism investigation on shock wave control by plasma aerodynamic actuation[J]. Acta Physica Sinica, 2009, 58(8): 5513-5519.(in Chinese)
[22] Wang J, Li Y H, Chen B Q, et al. Investigation on oblique shock wave control by arc discharge plasma in supersonic airflow[J]. Journal of Applied Physics, 2009, 106(7): 073307-073314.
[23] Wang J, Li Y H, Chen B Q, et al. Effects of plasma aerodynamic actuation on oblique shock wave in a cold supersonic flow[J]. Journal of Physics D: Applied Physics, 2009, 42(16): 165503-165511.
[24] McGilvray M, Jacobs P A, Morgan R G, et al. Helmholtz resonance of pitot pressure measurements in impulsive hypersonic test facilities. AIAA-2009-115, 2009.
[25] 居滋象, 吕友昌, 荆伯弘. 开环磁流体发电[M]. 北京: 北京工业大学出版社, 1998. Ju Cixiang. Lu Youchang, Jing Bohong. Open cycle MHD power generation[M]. Beijing: Beijing Industry University Press, 1998.(in Chinese)