Review

Progress in Preparation and Application of Density-graded Aerogels for Space Exploration

Expand
  • Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Tongji University, Shanghai 200092, China

Received date: 2010-09-26

  Revised date: 2010-11-22

  Online published: 2011-06-24

Abstract

Aerogel is a kind of key functional material for space exploration. In this paper, the classification, preparation methods, composite techniques, unique properties and space-exploration applications of homogenous aerogels and density-graded aerogels are systematically introduced. In particular, the composite technique of density-graded aerogels, which is regarded as a focus of international research, is classified into early method, multilayer-pasted method, layer-by-layer gelation method and gradient-sol co-gelation method. Also, the developing trends of the density-graded aerogels are summarized as the transitions from low gradient to high gradient, from graded density to gradient density, from low control accuracy to high control accuracy, and from homogeneous gradient to designed gradient, based on the previous studies of the authors. Furthermore, several functional designs on the distributions of composition and properties (density, refractive index and thermal conductivity) of the density-graded aerogels are provided, in order to meet the requirements of hyper-velocity particle capture, high-performance thermal insulation and high-resolution Cherenkov detection.

Cite this article

DU Ai, ZHOU Bin, ZHONG Yanhong, LI Yunong, GUI Jiayin, SHEN Yang, SHEN Jun, WU Guangming . Progress in Preparation and Application of Density-graded Aerogels for Space Exploration[J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011 , 32(6) : 961 -970 . DOI: CNKI:11-1929/V.20110330.1305.002

References

[1] Fricke J, Emmerling A. Aerogels[J]. Journal of American Ceramic Society, 1992, 75(8): 2027-2036.

[2] Pierre A C, Pajonk G M. Chemistry of aerogels and their applications[J]. Chemical Review, 2002, 102(11): 4243-4265.

[3] Fricke J, Emmerling A. Aerogels—preparation, properties, applications[J]. Structure and Bonding, 1992, 77: 37-87.

[4] 陈海宁, 邢雅兰, 李哲, 等. SiO2溶胶作用下电沉积锌电极性能研究[J]. 航空学报, 2009, 30(6): 1150-1155. Chen Haining, Xing Yalan, Li Zhe, et al. Effect of SiO2 sol on performance of electrodeposited zinc electrodes[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6): 1150-1155. (in Chinese)

[5] Jones S M. Aerogel: space exploration applications[J]. Journal of Sol-Gel Science and Technology, 2006, 40(2): 351-357.

[6] 杜艾. 无机分散溶胶凝胶法制备块体氧化物气凝胶:合成、机理与应用. 上海:同济大学物理系, 2010. Du Ai. Monolithic oxidic aerogels via dispersed inorganic sol-gel method: synthesis, mechanism and applications. Shanghai: Department of Physics, Tongji University, 2010. (in Chinese)

[7] Nicolaon G A, Teichner S J. New preparation process for silica xerogels and aerogels, and their textural properties[J]. Bulleti de la Societe Chimique de France, 1968(5): 1900-1906.

[8] Hrubesh L W, Tillotson T M, Poco J F. Characterization of ultralow-density silica aerogels made from a condensed silica precursor[J]. Materials Research Society Symposium Proceedings, 1990, 180: 315-319.

[9] 徐超, 周斌, 吴广明, 等. 超低密度SiO2气凝胶的制备及成型研究[J]. 强激光与粒子束, 2005, 17(11):1674-1678. Xu Chao, Zhou Bin, Wu Guangming, et al. Preparation and molding of ultralow-density silica aerogels[J]. High Power Laser and Particle Beams, 2005, 17(11): 1674-1678. (in Chinese)

[10] Pekala R W. Low density, resorcinol-formaldehyde aerogels: United States Patent, 4997804. 1991-05-03.

[11] Even W R, Crocker R W, Hunter M C, et al. Surface and near-surface structure in carbon microcellular materials produced from organic aerogels and xerogels[J]. Journal of Non-Crystalline Solids, 1995, 186: 191-199.

[12] Lu X, Arduini-Schuster M C, Kuhn J, et al. Thermal conductivity of monolithic organic aerogels[J]. Science, 1992, 255(5047): 971-972.

[13] 杜艾, 周斌, 沈军, 等. 块体气凝胶的通用制备方法进展[J]. 原子能科学技术, 2010, 44(8):1006-1013. Du Ai, Zhou Bin, Shen Jun, et al. Progress on universal methods to prepare monolithic aerogels[J]. Atomic Energy Science and Technology, 2010, 44(8): 1006-1013. (in Chinese)

[14] 杜艾, 李宇农, 周斌, 等. ICF用铜基低密度气凝胶靶材料研制[J]. 原子能科学技术, 2008, 42(9):794-798. Du Ai, Li Yunong, Zhou Bin, et al. Preparation method of monolithic copper oxide aerogels[J]. Atomic Energy Science and Technology, 2008, 42(9): 794-798. (in Chinese)

[15] Du A, Zhou B, Shen J, et al. Monolithic copper oxide aerogel via dispersed inorganic sol-gel method[J]. Journal of Non-Crystalline Solids, 2009, 355(3): 175-181.

[16] 肖淑芳, 周斌, 万慧军, 等. 无机分散溶胶-凝胶法制备块状锂基气凝胶[J]. 原子能科学技术, 2008, 42(S1):21-25. Xiao Shufang, Zhou Bin, Wan Huijun, et al. Monolithic lithium-based aerogels via dispersed inorganic sol-gel method[J]. Atomic Energy Science and Technology, 2008, 42(S1): 21-25. (in Chinese)

[17] Mohanan J L, Brock S L. A new addition to the aerogel community: unsupported CdS aerogels with tunable optical properties[J]. Journal of Non-Crystalline Solids, 2004, 350: 1-8.

[18] Utamapanya S, Klabunde K J, Schlup J R. Nanoscale metal oxide particles/clusters as chemical reagents: synthesis and properties of ultrahigh surface area magnesium hydroxide and magnesium oxide[J]. Chemistry of Materials, 1991, 3(1): 175-181.

[19] Wu G M, Wang A R, Zhang M X, et al. Investigation on properties of V2O5-MWCNTs composites as cathode materials[J]. Journal of Sol-Gel Science and Technology, 2008, 46(1): 79-85.

[20] Hassan S, Hector A L, Hyde J R, et al. A non-oxide sol-gel route to synthesise silicon imidonitride monolithic gels and high surface area aerogels[J]. Chemical Communications, 2008(42): 5304-5306.

[21] Fricke J, Caps R. Heat transfer in thermal insulations: Recent progress in analysis[J]. International Journal of Thermophysics, 1988, 9(5): 885-895.

[22] Fesmire J E, Sass J P. Aerogel insulation applications for liquid hydrogen launch vehicle tanks[J]. Cryogenics, 2008, 48(5-6): 223-231.

[23] Fesmire J E. Aerogel insulation systems for space launch applications[J]. Cryogenics, 2006, 46(2-3): 111-117.

[24] 沈军, 周斌, 吴广明, 等. 纳米孔超级绝热材料气凝胶的制备与热学特性[J]. 过程工程学报, 2002, 2(4):341-345. Shen Jun, Zhou Bin, Wu Guangming, et al. Preparation and investigation of nanoporous super thermal insulation: silica aerogels[J]. The Chinese Journal of Process Engineering, 2002, 2(4): 341-345. (in Chinese)

[25] 王珏, 沈军, Fricke J. 高效隔热材料掺TiO2及玻璃纤维硅石气凝胶的研制[J]. 材料研究学报, 1995, 9(6):568-572. Wang Jue, Shen Jun, Fricke J. Preparation and investigation of highly effective thermal insulations: silica aerogels doped with TiO2 powder and ceramic fiber[J]. Chinese Journal of Materials Research, 1995, 9(6): 568-572. (in Chinese)

[26] 李龙翔. SiO2气凝胶材料力学与成型性能研究. 银川:宁夏大学物理系, 2010. Li Longxiang. Mechanical and formation properties of SiO2 aerogels. Yinchuan: Department of Physics, Ningxia University, 2010.(in Chinese)

[27] 钟艳红, 周斌, 归佳寅, 等. 超低密度碳气凝胶结构表征及性能研究[J]. 原子能科学技术(待发表). Zhong Yanhong, Zhou Bin, Gui Jiayin, et al. Research into structural characteristic and properties of ultralow-density carbon aerogels[J]. Atomic Energy Science and Technology (in Press). (in Chinese)

[28] Schlitt R, Bodendieck F, Serène F. Thermal performance tests of different insulation materials in a simulated mars environment//Fourth International Symposium Environmental Testing for Space Programmers. Palais de Congrès: European Space Agency, 2001: 121-128.

[29] Novak K S, Phillips C J, Birur G C, et al. Development of a thermal control architecture for the Mars exploration rovers//Space Technology Applications International Forum. Albuquerque: University of New Mexico, 2003: 1-12.

[30] 王闯, 邓宗全, 高海波, 等. 国内外月球着陆器研究状况[J]. 导弹与航天运载技术, 2006(4): 31-36. Wang Chuang, Deng Zongquan, Gao Haibo, et al. Development status of lunar landers[J]. Missile and Space Vehicles, 2006(4): 31-36. (in Chinese)

[31] Domínguez G, Westphal A J, Jones S M, et al. Energy loss and impact catering in aerogels: theory and experiment[J]. Icarus, 2004, 172(2): 613-624.

[32] Iijima T, Adachi I, Amami M, et al. Aerogel Cherenkov counter for the BELLE experiment[J]. Nuclear Instruments Methods Physics Research A, 1996, 379(3): 457-459.

[33] 郭洪波, 宫声凯, 徐惠彬. 梯度热障涂层的设计[J]. 航空学报, 2002, 23(5): 467-472. Guo Hongbo, Gong Shengkai, Xu Huibin. Design of gradient thermal barrier coatings[J]. Acta Aeronautica et Astronautica Sinica, 2002, 23(5): 467-472. (in Chinese)

[34] Gerlach R, Kraus O, Fricke J, et al. Modified SiO2 aerogels as acoustic impedance matching layers in ultrasonic devices[J]. Journal of Non-Crystalline Solids, 1992, 145: 227-232.

[35] Jerri H A, Sheehan W P, Snyder C E, et al. Prolonging density gradient stability[J]. Langmuir, 2010, 26(7): 4725-4731.

[36] Walter K. Meeting the target challenge. LLNL S&TR, July/August 2007: 12-19.

[37] 钟艳红, 周斌, 归佳寅, 等. 密度渐变多层碳气凝胶靶型的制备研究[J]. 强激光与粒子束, 2010, 23(3): 657-660. Zhong Yanhong, Zhou Bin, Gui Jiayin, et al. Research for fabrication of multilayer graded density carbon aerogel target[J]. High Power Laser and Particle Beams, 2010, 23(3): 657-660. (in Chinese)

[38] 钟艳红, 周斌, 归佳寅, 等. 碳气凝胶薄片的制备及其表面密度致密层去除工艺[J]. 强激光与粒子束, 2010, 22(12): 2875-2879. Zhong Yanhong, Zhou Bin, Gui Jiayin, et al. Research for fabrication of carbon aerogel sheet and technics of removing its dense layer[J]. High Power Laser and Particle Beams, 2010, 22(12): 2875-2879. (in Chinese)

[39] 归佳寅, 周斌, 杜艾, 等. 逐层凝胶法制备密度渐变SiO2气凝胶及界面研究[J]. 功能材料, 2010, 42(12): 2113-2116. Gui Jiayin, Zhou Bin, Du Ai, et al. Fabrication of graded density SiO2 aerogel via layer-by-layer gel technique and its interface research[J]. Journal of Functional Materials, 2010, 42(12): 2113-2116. (in Chinese)

[40] Jones S M. A method for producing gradient density aerogel[J]. Journal of Sol-Gel Science and Technology, 2007, 44(3): 255-258.

[41] 归佳寅, 周斌, 钟艳红, 等. 溶胶共凝法制备密度渐变SiO2气凝胶及界面研究[J]. 航空学报, 2011, 32(5): 941-947. Gui Jiayin, Zhou Bin, Zhong Yanhong, et al. Research to fabrication of graded density SiO2 aerogel via sol co-gelation technics[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5): 941-947. (in Chinese)

[42] Gui J Y, Zhou B, Zhong Y H, et al. Fabrication of gradient density SiO2 aerogel[J]. Journal of Sol-Gel Science and Technology, 2011, 58(2): 470-475.

[43] Tsou P. Silica aerogel captures cosmic dust intact[J]. Journal of Non-Crystalline Solids, 1995, 186: 415-427.

[44] Tsou P, Brownlee D E, Anderson J D, et al. Stardust encounters comet 81P/Wild 2[J]. Journal of Geophysical Research, 2004, 109(12): E12S01-1-8.

[45] Special issue: Stardust[J]. Science, 2006, 314(5806): 1641-1824.

[46] Wikipedia. Cherenkov radiation. (2010-09-18) http://en.wikipedia.org/wiki/Cherenkov_ radiation.

[47] Arnaboldi C, Bellunato T, Calvi M, et al. Multilayer aerogel for compact RICH detectors[J]. Nuclear Physics B, 2009, 197(1): 57-61.

[48] Johnson W L, Demko J A, Fesmire J E. Analysis and testing of multilayer and aerogel insulation configurations//Transactions of the Cryogenic Engineering Conference: Advances in Cryogenic Engineering. AIP Conference Proceedings, 2010, 1218(1): 780-787.

[49] Hemberger F, Weis S, Gudrun R, et al. Thermal transport properties of functionally graded carbon aerogels[J]. International Journal of Thermophysics, 2009, 30(4): 1357-1371.
Outlines

/