Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (13): 532336.doi: 10.7527/S1000-6893.2025.32336
• Review • Previous Articles
Zhibing ZHANG1, Ziyang ZHEN2,3(
)
Received:2025-05-30
Revised:2025-06-09
Accepted:2025-06-13
Online:2025-06-17
Published:2025-06-16
Contact:
Ziyang ZHEN
E-mail:zhenziyang@nuaa.edu.cn
CLC Number:
Zhibing ZHANG, Ziyang ZHEN. Research progress on guidance and control of fixed-wing manned and unmanned carrier-based aircraft landing[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 532336.
| [1] | DEPARTMENT of the NAVY. Naval aviation vision 2030-2035: NAVAIR Public Release 2021-478[R]. Washington, D.C.: Department of the Navy, 2021. |
| [2] | 王永庆. 固定翼舰载战斗机关键技术与未来发展[J].航空学报, 2021, 42(08): 525859. |
| WANG Y Q. Fixed-wing carrier-based aircraft: Key technologies and future development[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525859 (in Chinese). | |
| [3] | 万兵, 苏析超, 汪节, 等. 基于模型预测控制算法的精确着舰控制方法[J]. 北京航空航天大学学报, 2024, 50(4): 1197-1207. |
| WAN B, SU X C, WANG J, et al. A precise landing control method based on model predictive control algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(4): 1197-1207 (in Chinese). | |
| [4] | 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术, 2018, 40(9): 2079-2091. |
| WU W H, WANG J, GAO L, et al. Analysis on MAGIC CARPET carrier landing technology[J]. Systems Engineering and Electronics, 2018, 40(9): 2079-2091 (in Chinese). | |
| [5] | 宋立廷, 周思羽, 张杨, 等. 级联式预设性能动态逆解耦直接升力着舰控制[J]. 哈尔滨工业大学学报, 2023, 55 (12): 42-53. |
| SONG L T, ZHOU S Y, ZHANG Y, et al. Cascaded comprehensive direct lift control law based on prescribed performance dynamic inversion for carrier landing[J]. Journal of Harbin Institute of Technology, 2023, 55 (12): 42-53 (in Chinese). | |
| [6] | 杨一栋, 甄子洋, 邱述斌, 等. 无人机着舰制导与控制[M]. 北京: 国防工业出版社, 2013: 1-5. |
| YANG Y D, ZHEN Z Y, QIU S B, et al. Unmanned aerial vehicle carrier landing guidance and control[M]. Beijing: National Defence Industry Press, 2013: 1-5 (in Chinese). | |
| [7] | 江驹, 王新华, 甄子洋, 等. 舰载机起飞着舰引导与控制[M]. 北京: 科学出版社, 2019: 2-5. |
| JIANG J, WANG X H, ZHEN Z Y, et al. Guidance and control of carrier-based aircraft take off and landing[M]. Beijing: Science Press, 2019: 2-5 (in Chinese). | |
| [8] | 张智, 朱齐丹, 张雯, 等. 航母舰载机全自动引导着舰技术[M]. 哈尔滨:哈尔滨工程大学出版社, 2016: 1-7. |
| ZHANG Z, ZHU Q D, ZHANG W, et al. Full-automatic guided landing technology of carrier-based aircraft[M]. Harbin: Harbin Engineering University Press, 2016: 1-7 (in Chinese). | |
| [9] | 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2): 020435. |
| ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 020435 (in Chinese). | |
| [10] | 张志冰, 甄子洋, 江驹, 等. 舰载机自动着舰引导与控制综述[J]. 南京航空航天大学学报, 2018, 50(6): 734-744. |
| ZHANG Z B, ZHEN Z Y, JIANG J, et al. Review on development in guidance and control of automatic landing of carrier-based aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6): 734-744 (in Chinese). | |
| [11] | 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展[J]. 自动化学报, 2019, 45(4): 669-681. |
| ZHEN Z Y. Research development in autonomous carrier-landing/ship-recovery guidance and control of carrier-based unmanned aerial vehicles[J]. Acta Automatica Sinica, 2019, 45(4): 669-681 (in Chinese). | |
| [12] | GlobalSecurity.org. Naval unmanned combat air vehicle [EB/OL]. (2025-01-09) [2025-05-30]. . |
| [13] | DEPARTMENT of DEFENSE. Unmanned aircraft systems roadmap[R]. Washington, D.C.: Office of the Secretary of Defense, 2005. |
| [14] | WHITTENBURY J. Configuration design development of the navy UCAS-D X-47B: AIAA-2011-7041[R]. Reston: AIAA, 2011. |
| [15] | GERTLER J. History of the navy UCLASS program requirements: In brief[M]. Washington, DC: Congressional Research Service, 2015. |
| [16] | ASIA PACIFIC DEFENCE REPORTER. MQ-25 stingray CBARS program dramatically shifts its orientation[EB/OL]. (2024-03-20) [2025-05-30]. . |
| [17] | 朱超磊. 美军MQ-25A舰载无人加油机研制历程及影响分析[J]. 国防科技工业, 2021(5): 61-65. |
| ZHU C L. Development course and influence analysis of MQ-25A unmanned tanker on board of US Army[J]. Defense Science & Technology Industry, 2021, (5): 61-65 (in Chinese). | |
| [18] | 郑震山, 何肇雄, 李翀伦, 等. 美军发展MQ-25A舰载无人加油机的动因及启示[J]. 航空学报, 2023, 44(20): 628797. |
| ZHENG Z S, HE Z X, LI C L, et al. Motivation and inspiration for U. S. military developing MQ-25A carrier-based aerial-refueling UAS[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(20): 628797 (in Chinese). | |
| [19] | SOUSA P, WELLONS L, COLBY G, et al. Test results of an F/A-18 automatic carrier landing using shipboard relative global positioning system: ADA417314[R]. Patuxent River: Rapport technique, Naval Air Warfare Center Aircraft Division, 2003. |
| [20] | DENHAM J W. Project MAGIC CARPET: “Advanced controls and displays for precision carrier landings”: AIAA-2016-1770[R]. Reston: AIAA, 2016. |
| [21] | 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J]. 航空学报, 2019, 40(4): 622328. |
| DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622328 (in Chinese). | |
| [22] | WALKER H P, PAGAN J, WALWANIS M. Improving the safety of carrier landings: Maritime augmented guidance with integrated controls for carrier approach and recovery precision enabling technologies[C]∥Orlando: Annual SAFE Symposium, 2014: 310-317. |
| [23] | 朱玉莲, 甄子洋, 季雨璇, 等. 舰载飞机着舰直接力控制方法[J]. 电光与控制, 2020, 27(11): 1-5. |
| ZHU Y L, ZHEN Z Y, JI Y X, et al. Direct lift control for auto-landing of shipboard aircraft[J]. Electronics Optics & Control, 2020, 27( 11) : 1-5 (in Chinese). | |
| [24] | 朱玉莲. 舰载机“魔毯”着舰技术研究[D]. 南京: 南京航空航天大学, 2020: 42-48. |
| ZHU Y L. Research on “magic carpet” landing technology of carrier-based aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020:42-48 (in Chinese). | |
| [25] | SHAFER D M, PAUL R C, KING M J, et al. Aircraft carrier landing demonstration using manual control by a ship-based observer: AIAA‑2019‑0010[R]. Reston,AIAA, 2019. |
| [26] | ROBBINS D, BOBALIK J, DE STENA D, et al. F-35 subsystems design, development & verification: AIAA-2018-3518[R]. Reston: AIAA, 2018. |
| [27] | 孙聪. 从空战制胜机理演变看未来战斗机发展趋势[J]. 航空学报, 2021, 42(8): 525826. |
| SUN C. Development trend of future fighter: a review of evolution of winning mechanism in air combat[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525826 (in Chinese). | |
| [28] | PRICKETT A L, PARKES C J. Flight testing of the F/A-18E/F automatic carrier landing system[C]∥2001 IEEE Aerospace Conference Proceedings. Piscataway: IEEE Press, 2001: 2593-2612. |
| [29] | URNES J M, HESS R K. Development of the F/A-18A automatic carrier landing system[J]. Journal of Guidance, Control, and Dynamics, 1985, 8(3): 289-295. |
| [30] | 顾海燕, 熊健. 全自动精密进近引导与传输技术研究[J]. 电讯技术, 2024, 64(7): 1102-1106. |
| GU H Y, XIONG J. Research on fully automatic precision approach guidance and transmission technology[J]. Telecommunication Engineering, 2024, 64(7): 1102-1106 (in Chinese). | |
| [31] | MCPEAK M A. Joint USAF-USN mission need statement for precision approach and landing capability: USAF 002 94[R]. Washington, D.C.: U.S. Air Force, 1994. |
| [32] | BOSELEY K, WAID J. Demonstration system for u sing shipboard-relative GPS[J]. GPS World, 2005, 16(4): 24-33. |
| [33] | HARKER R, GILLIGAN J. Dual thread-automatic takeoff and landing system (dt-atls)[C]∥Proceedings of the 19th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2006). Manassas: ION, 2006: 1146-1150. |
| [34] | 李青松. 飞机进近着舰机载端自主完好性监测与多天线多约束定姿方法研究[D]. 长沙: 国防科学技术大学, 2016: 72-78. |
| LI Q S. Research on airborne autonomous integrity monitoring for aircraft approach and landing and muti-constraint attitude determination methods with muti-antenna[D]. Changsha: National University of Defense Technology, 2016: 72-78 (in Chinese). | |
| [35] | 王官龙, 崔晓伟, 陆明泉. 北斗三频海基JPALS无故障导航算法[J]. 航空学报, 2017, 38(12): 321340. |
| WANG G L, CUI X W, LU M Q. Triple-frequency sea-based JPALS fault-free navigation algorithm for BDS[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(12): 321340 (in Chinese). | |
| [36] | COUTARD L, CHAUMETTE F, PFLIMLIN J M. Automatic landing on aircraft carrier by visual servoing[C]∥2011 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2011: 2843-2848. |
| [37] | 毕道明, 黄辉, 范静, 等. 视觉着舰中非合作结构化特征匹配算法[J]. 南京航空航天大学学报, 2021, 53(3): 395-401. |
| BI D M, HUANG H, FAN J, et al. Non⁃cooperative structural feature matching algorithm in visual landing[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2021, 53(03): 395-401 (in Chinese). | |
| [38] | 甄冲, 曲晓雷, 王翼丰, 等. 视觉引导误差对自动着舰性能影响研究[J]. 航空工程进展, 2025, 16(1): 101-107+116. |
| ZHEN C, QU X L, WANG Y F, et al. Impact of visual guidance error on automatic carrier landing performance[J]. Advances in Aeronautical Science and Engineering, 2025, 16(1): 101-107+116 (in Chinese). | |
| [39] | 牛斌, 张志冰, 黄辉, 等. 基于无迹卡尔曼滤波的视觉着舰引导算法[J]. 控制工程, 2023, 30 (3): 459-468. |
| NIU B, ZHANG Z B, HUANG H, et al. Visual landing guidance algorithm based on unscented Kalman filtering[J]. Control Engineering of China, 2023, 30 (3): 459-468 (in Chinese). | |
| [40] | 阴浩博. 基于视觉的舰载机着舰引导技术及仿真系统研究[D]. 南京: 南京航空航天大学, 2022: 33-34, 52-57. |
| YIN H B. Research on vision-based carrier aircraft landing guidance technology and simulation system[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 33-34, 52-57 (in Chinese). | |
| [41] | 李喜龙, 范海震, 史会丽. 光电引导系统在舰载机着舰引导中的作用分析[J]. 舰船电子工程, 2017, 37(7): 145-149,164. |
| LI X L, FAN H Z, SHI H L. Analysis of the role of electro-optical guidance systems in carrier-based aircraft landing guidance[J]. Ship Electronic Engineering, 2017, 37(7): 145-149, 164 (in Chinese). | |
| [42] | WON D H, LEE E, HEO M, et al. Selective integration of GNSS, vision sensor, and INS using weighted DOP under GNSS-challenged environments[J]. IEEE Transactions on Instrumentation and Measurement, 2014, 63(9): 2288-2298. |
| [43] | 陈逸飞. 舰载机着舰多体制引导系统设计与分析[D].南京: 南京航空航天大学, 2021: 24-25. |
| CHEN Y F. Design and analysis of multi-system guidance system for carrier-based aircraft landing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 24-25 (in Chinese). | |
| [44] | 李青松. 飞机着舰机载端卫星/惯性组合精密相对定位完好性监测方法研究[D]. 长沙: 国防科技大学, 2022: 56-60. |
| LI Q S. Research on airborne integrity monitoring of DGNSS/INS integrated precision relative positioning for shipboard landing[D]. Changsha: National University of Defense Technology, 2022: 56-60 (in Chinese). | |
| [45] | 熊晨耀. 北斗/惯性紧组合高精度高完好位置增量导航方法研究[D]. 长沙: 国防科技大学, 2021: 23-27. |
| XIONG C Y. Research on tightly coupled BDS/INS high precision and high integrity position increment navigation method[D]. Changsha: National University of Defense Technology, 2021: 23-27 (in Chinese). | |
| [46] | MENG Y, WANG W, HAN H, et al. A visual/inertial integrated landing guidance method for UAV landing on the ship[J]. Aerospace Science and Technology, 2019, 85: 474-480. |
| [47] | GUO D, WANG X D. Quasi-Monte Carlo filtering in nonlinear dynamic systems[J]. IEEE Transactions on Signal Processing, 2006, 54(6): 2087-2098. |
| [48] | WILKINSON C, FINDLAY D, BOOTHE K, et al. The sea-based automated launch and recovery system virtual testbed: AIAA-2014-0474[R]. Reston: AIAA, 2014. |
| [49] | WILKINSON C, FINDLAY D, NICHOLS J, et al. Shipboard aircraft simulation with ship-relative navigation sensor modeling: AIAA-2016-1769[R]. Reston:AIAA, 2016. |
| [50] | MISRA G, GAO T, BAI X. Modeling and simulation of UAV carrier landings: AIAA-2019-1981[R]. Reston:AIAA, 2019. |
| [51] | YUAN Y, DUAN H B, ZENG Z G. Automatic carrier landing control with external disturbance and input constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1426-1438. |
| [52] | DUAN H B, CHEN L, ZENG Z G. Automatic landing for carrier-based aircraft under the conditions of deck motion and carrier airwake disturbances[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(6): 5276-5291. |
| [53] | DUAN H B, YUAN Y, ZENG Z G. Automatic carrier landing system with fixed time control[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(4): 3586-3600. |
| [54] | WANG J H, TANG H N, LIU H L, et al. Design of longitudinal automatic carrier landing system based on reinforcement learning[C]∥International Conference on Guidance, Navigation and Control. Singapore: Springer Nature Singapore, 2022: 2964-2976. |
| [55] | LEE B C, SAJ V, KALATHIL D, et al. Intelligent vision-based autonomous ship landing of VTOL UAVs[J]. Journal of the American Helicopter Society, 2023, 68(2): 113-126. |
| [56] | GREEN B E, FINDLAY D. CFD analysis of the F/A-18E Super Hornet during aircraft-carrier landing high-lift aerodynamic conditions: AIAA-2016-1768[R]. Reston:AIAA, 2016. |
| [57] | BEVILAQUA P M. Genesis of the F-35 joint strike fighter[J]. Journal of Aircraft, 2009,46(6):1825-1836. |
| [58] | POOLE D. X-35 flight test report[R].Los Angeles: Lockheed Martin Corporation, 2001. |
| [59] | WILSON M. F-35 carrier suitability flight testing: AIAA-2018-3678[R]. Reston: AIAA, 2018. |
| [60] | HARRIS J J. F-35 flight control law design, development and verification: AIAA-2018-3516[R]. Reston: AIAA, 2018. |
| [61] | DESALVO M, HEATHCOTE D, SMITH M J, et al. Direct lift control using distributed aerodynamic bleed: AIAA-2019-0591[R]. Reston: AIAA, 2019. |
| [62] | 刘宪飞, 王勇, 张代兵. 高抗扰高精度无人机着舰纵向飞行控制[J]. 北京航空航天大学学报, 2017, 43(9): 1891-1899. |
| LIU X F, WANG Y, ZHANG D B. High-immunity high-precision longitudinal flight control for UAV’s carrier landing[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(9): 1891-1899 (in Chinese). | |
| [63] | GUAN Z Y, LIU H, ZHENG Z W, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology, 2022, 120: 107247. |
| [64] | 孙笑云, 江驹, 甄子洋, 等. 舰载飞机自适应模糊直接力着舰控制[J]. 西北工业大学学报, 2021, 39(2): 359-366. |
| SUN X Y, JIANG J, ZHEN Z Y, et al. Adaptive fuzzy direct lift control of aircraft carrier-based landing[J]. Journal of Northwestern Polytechnical University, 2021, 39(2): 359-366 (in Chinese). | |
| [65] | LT C, GOTKE F, SCORER. Why land and then stop a V/STOL aircraft on a carrier[R]. Lancaster: Society of Experimental Test Pilots, 2007. |
| [66] | WALKER G P, FULLER J W, WURTH S P. F-35B integrated flight-propulsion control development: AIAA-2013-4243[R]. Reston: AIAA, 2013. |
| [67] | 刘亮, 陶呈纲, 薛艺璇, 等. 基于增量动态逆的V/STOL飞机悬停段控制[J]。 飞行力学, 2022, 40(4): 27-33. |
| LIU L, TAO C G, XUE Y X, et al. INDI based flight control for V/STOL aircraft in hover mode[J]. Flight Dynamics, 2022, 40(4): 27-33 (in Chinese). | |
| [68] | 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021, 42(8): 525840. |
| ZHANG Z B, ZHANG X L, WANG J X, et al. A control method for IDLC manual landing precision based on multi-control surface control allocation[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525840 (in Chinese). | |
| [69] | 罗飞, 张军红, 耿延升, 等. 动态逆反馈控制框架下直接升力控制的控制分配研究[J]. 航空科学技术, 2022, 33 (8): 51-60. |
| LUO F, ZHANG J H, GENG Y S, et al. Study on control allocation technology of direct lift control under dynamic in version feedback control framework[J]. Aeronautical Science & Technology, 2022, 33(8): 51-60 (in Chinese). | |
| [70] | 彭淼. 舰载机着舰执行器故障容错控制研究[D]. 南京: 南京航空航天大学, 2021: 42-45. |
| PENG M. Research on fault-tolerant control for carrier-based aircraft with actuator failures[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2021: 42-45 (in Chinese). | |
| [71] | WANG L P, YUAN D H, CAO R T, et al. Automatic landing of carrier-based aircraft based on a collaboration of fault reconstruction and fault-tolerant control[J]. Aerospace Science and Technology, 2024, 144: 108772. |
| [72] | 何胜涛. 直接升力作用下舰载机自动着舰容错控制研究[D]. 南京: 南京航空航天大学, 2023: 22-28. |
| HE S T. Research on fault-tolerant control of carrier-based aircraft automatic landing under direct lift[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2023: 22-28 (in Chinese). | |
| [73] | XUE Y X, ZHEN Z Y, YANG L Q, et al. Adaptive fault-tolerant control for carrier-based UAV with actuator failures[J]. Aerospace Science and Technology, 2020, 107: 106227. |
| [74] | 何胜涛, 江驹, 余朝军, 等. 基于自适应固定时间的直接升力着舰容错控制[J]. 电光与控制, 2023, 30(9): 29-35, 98. |
| HE S T, JIANG J, YU C J, et al. Fault-tolerant control of direct lift carrier landing based on adaptive fixed time[J]. Electronics Optics & Control, 2023, 30(9): 29-35, 98 (in Chinese). | |
| [75] | ZHEN Z Y, TAO G, YU C J, et al. A multivariable adaptive control scheme for automatic carrier landing of UAV[J]. Aerospace Science and Technology, 2019, 92: 714-721. |
| [76] | XIAO H, ZHEN Z, ZHANG Z, et al. Robust fault-tolerant preview control for automatic landing of carrier-based aircraft[J]. Aircraft Engineering and Aerospace Technology, 2024, 96(5): 679-689. |
| [77] | ZHEN Z Y, JIANG S Y, JIANG J. Preview control and particle filtering for automatic carrier landing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(6): 2662-2674. |
| [78] | BHATIA A K, JIANG J, ZHEN Z Y, et al. Robust adaptive preview control design for autonomous carrier landing of F/A-18 aircraft[J]. Aircraft Engineering and Aerospace Technology, 2021, 93(4): 642-650. |
| [79] | LEE B C, SAJ V, BENEDICT M, et al. A deep reinforcement learning control strategy for vision-based ship landing of vertical flight aircraft: AIAA-2021-3218[R]. Reston: AIAA, 2021. |
| [80] | 柳仁地, 江驹, 张哲, 等. 基于强化学习的舰载机着舰直接升力控制技术[J/OL]. 北京航空航天大学学报, (2023-11-24)[2025-05-30]. . |
| LIU R D, JIANG J, ZHANG Z, et al. Direct lift control technology of carrier aircraft landing based on reinforcement learning[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (2023-11-24)[2025-05-30]. (in Chinese). | |
| [81] | DOU R, DUAN H B. Lévy flight based pigeon-inspired optimization for control parameters optimization in automatic carrier landing system[J]. Aerospace Science and Technology, 2017, 61: 11-20. |
| [82] | YANG Z Y, DUAN H B, FAN Y M, et al. Automatic carrier landing system multilayer parameter design based on Cauchy mutation pigeon-inspired optimization[J]. Aerospace Science and Technology, 2018, 79: 518-530. |
| [83] | DORSETT K M, MEHL D R. Innovative control effectors (ICE): WL-TR-96-3043[R]. Fort Worth, TX: Lockheed Martin Tactical Aircraft Systems, 1996. |
| [84] | MATAMOROS I, DE VISSER C C. Incremental non-linear control allocation for a tailless aircraft with innovative control effectors: AIAA-2018-1116[R]. Reston:AIAA, 2018. |
| [85] | 刘亮. 具有升力风扇的STOVL飞机起降控制研究[D]. 南京: 南京航空航天大学, 2022: 8-9. |
| LIU L. Take-off and landing control for STOVL aircraft with lift fan[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 8-9 (in Chinese). | |
| [86] | 刘亮, 唐勇, 陶呈纲, 等. 基于控制分配的推力矢量短距起飞垂直降落飞机减速过渡控制[J]. 哈尔滨工程大学学报, 2022, 43(6): 832-841. |
| LIU L, TANG Y, TAO C G, et al. Deceleration transition controller design of thrust-vectored short takeoff and vertical landing aircraft based on control allocation[J]. Journal of Harbin Engineering University, 2022, 43(6): 832-841 (in Chinese). | |
| [87] | ANTHONY B. PAGE E. DEAN M,et al. Flight testing of a retrofit reconfigurable control law architecture using an F/A-18C: AIAA-2006-6052[R]. Reston: AIAA, 2006. |
| [88] | XUE Y X, CHEN Y K, TAO C G, et al. Disturbance rejection based on discrete-time adaptive preview control for unmanned aerial vehicle shipboard landing under structure damage[J]. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 2024, 238(6): 1102-1111. |
| [89] | XIAO H, ZHEN Z Y, XUE Y X. Fault-tolerant attitude tracking control for carrier-based aircraft using RBFNN-based adaptive second-order sliding mode control[J]. Aerospace Science and Technology, 2023, 139: 108408. |
| [90] | XUE Y X, ZHEN Z Y, ZHANG Z B, et al. Automatic carrier landing for UAV based on integrated disturbance observer and fault-tolerant control[J]. Aircraft Engineering and Aerospace Technology, 2023, 95(8): 1247-1256. |
| [91] | 肖慧雨诺. 执行器故障下的舰载机着舰自适应预见容错控制研究[D]. 南京: 南京航空航天大学, 2024: 24-27. |
| XIAO H Y N. Research on adaptive preview fault-tolerant control for carrier-based aircraft with actuator faults[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2024: 24-27 (in Chinese). | |
| [92] | 郑泽伟, 马云鹏, 关智元. 舰载机非线性着舰控制技术[M]. 北京:北京航空航天大学出版社, 2023: 109-134. |
| ZHENG Z W, MA Y P, GUAN Z Y. Nonlinear landing control technology for carrier-based aircraft[M]. Beijing: Beihang University Press, 2023: 109-134 (in Chinese). | |
| [93] | REED S, STECK J E. Adaptive control for fault tolerant autonomous carrier recovery: AIAA-2018-0871[R]. Reston: AIAA, 2018. |
| [94] | 罗飞, 张军红, 王博, 等. 基于直接升力与动态逆的舰尾流抑制方法[J]. 航空学报, 2021, 42(12): 124770. |
| LUO F, ZHANG J H, WANG B, et al. Air wake suppression method based on direct lift and nonlinear dynamic inversion control[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124770 (in Chinese). | |
| [95] | NICHOLAS A. Automated carrier landing of an unmanned combat aerial vehicle using dynamic inversion[D]. Alabama: Department of the Air Force Air University, 2007: 19-30. |
| [96] | 杨柳青, 甄子洋, 邢冬静, 等. 舰载无人机自动着舰自适应控制系统设计[J]. 飞行力学, 2018, 36(6): 36-39. |
| YANG L Q, ZHEN Z Y, XING D J, et al. Automatic carrier landing adaptive control system design of carrier-based UAV[J]. Flight Dynamics, 2018, 36(6): 36-39 (in Chinese). | |
| [97] | 甄子洋, 陶钢, 江驹, 等. 无人机自动撞网着舰轨迹自适应跟踪控制[J]. 哈尔滨工程大学学报, 2017, 38(12): 1922-1927. |
| ZHEN Z Y, TAO G, JIANG J, et al. Adaptive tracking control of automatic net landing trajectory for carrier-based UAV[J]. Journal of Harbin Engineering University, 2017, 38(12): 1922-1927 (in Chinese). | |
| [98] | ZHEN Z Y, YU C J, JIANG S Y, et al. Adaptive super-twisting control for automatic carrier landing of aircraft[J]. IEEE Transactions on Aerospace and Electronic Systems, 2020, 56(2): 984-997. |
| [99] | RAMESH S H, SUBBARAO K. Autonomous carrier landing system for the A/V-8B harrier like UAV[J]. IFAC-PapersOnLine, 2016, 49(1): 290-295. |
| [100] | HESS R A. Providing flight-path control bandwidth for carrier landings[J]. Journal of Aircraft, 2017, 55(1): 406-409. |
| [101] | 甄子洋, 预见控制理论及应用研究进展[J], 自动化学报, 2016, 42(2): 172-188. |
| ZHEN Z Y. Research development in preview control theory and applications[J]. Acta Automatica Sinica, 2016, 42(2): 172-188 (in Chinese). | |
| [102] | ZHEN Z Y, JIANG S Y, MA K. Automatic carrier landing control for unmanned aerial vehicles based on preview control and particle filtering[J]. Aerospace science and technology, 2018, 81: 99-107. |
| [103] | BHATIA A K, JIANG J, KUMAR A, et al. Adaptive preview control with deck motion compensation for autonomous carrier landing of an aircraft[J]. International Journal of Adaptive Control and Signal Processing, 2021, 35(5): 769-785. |
| [104] | MISRA G, BAI X L. Output-feedback stochastic model predictive control for glideslope tracking during aircraft carrier landing[J]. Journal of Guidance, Control, and Dynamics, 2019, 42(9): 2098-2105. |
| [105] | LIU R D, JIANG J, LIU X, et al. Carrier aircraft landing control technology based on deep reinforcement learning[C]∥2023 6th International Symposium on Autonomous Systems (ISAS). Piscataway: IEEE Press, 2023: 1-6. |
| [106] | LUNGU M, DINU D A, CHEN M, et al. Inverse optimal control for autonomous carrier landing with disturbances[J]. Aerospace Science and Technology, 2023, 139: 108382. |
| [107] | XU S T, TAN W Q, SUN L G. Modeling shared control system between human pilot and autopilot for a carrier-based aircraft landing task[J]. IEEE Transactions on Human-Machine Systems, 2025, 55(1): 102-111. |
| [108] | MCDONALD M, RICHARDS P W, WALKER M, et al. Carrier landing simulation using detailed aircraft and landing: AIAA-2020-1138[R]. Reston: AIAA, 2020. |
| [109] | 许卫宝. 飞行员着舰的多层次模糊综合评价方法[J]. 中国舰船研究, 2013, 8 (2): 17-21. |
| XU W B. A comprehensive evaluation method for carrier landing based on fuzzy analytical hierarchy process[J]. Chinese Journal of Ship Research, 2013, 8 (2): 17-21 (in Chinese). | |
| [110] | LI Y, YIN H T. An effective method for performance evaluation of ACLS based on improved grey analytic hierarchy[J]. Journal of Measurement Science and Instrumentation, 2022, 13 (2): 166-172. |
| [111] | LIU T, GU B, WU Z H, et al. Research on carrier-based aircraft glide slope rating method based on cloud model[J]. Journal of Physics: Conference Series. IOP Publishing, 2025, 2977(1): 012111. |
| [112] | 马捷. 基于MBSE方法的全自动着舰系统(ACLS)安全性分析方法研究[J]. 航空标准化与质量, 2023, (4): 37-43. |
| MA J. A study on safety analysis method for automatic carrier landing system (ACLS) based on MBSE approach[J]. Aeronautic Standardization & Quality, 2023, (4): 37-43 (in Chinese). | |
| [113] | ZHOU D, ZHOU J L, ZHANG M J, et al. Deep learning for unmanned aerial vehicles landing carrier in different conditions[C]∥2017 18th International Conference on Advanced Robotics (ICAR). Piscataway: IEEE Press, 2017: 469-475. |
| [114] | 焦鑫. 舰载机着舰环境与复飞决策技术研究[D]. 南京: 南京航空航天大学, 2012: 60-64. |
| JIAO X. Research on carrier-based aircraft landing condition and wave-off decision technology[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012: 60-64 (in Chinese). | |
| [115] | 杜洁. 舰载机复飞决策及操纵策略研究[D]. 南京: 南京航空航天大学, 2015: 39-45. |
| DU J. Research on carrier-based aircraft wave-off decision and control strategy[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015: 39-45 (in Chinese). | |
| [116] | ZHANG L, WANG L, XING Z, et al. Research on wave-off decision and elevator manipulation optimization of carrier-based UAV[C]∥International Conference on Guidance, Navigation and Control. Singapore: Springer Nature Singapore, 2022: 5342-5354. |
| [117] | 崔凯凯, 韩维, 刘玉杰, 等. 基于DM-DSC的舰载机着舰自动复飞控制算法[J]. 北京航空航天大学学报, 2023, 49 (4): 900-912. |
| CUI K K, HAN W, LIU Y J, et al. Automate wave-of control algorithm for carrier aircraft based on DM-DSC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(4): 900-912 (in Chinese). | |
| [118] | 段萍萍, 聂宏, 魏小辉. 飞机触舰后逃逸复飞性能分析[J]. 中国机械工程, 2014, 25(9): 1225-1231. |
| DUAN P P, NIE H, WEI X H. Bolting and go-around performance analysis of carrier-based aircraft[J]. Mechanical Engineering, 2014, 25(9): 1225-1231 (in Chinese). | |
| [119] | 林佳铭, 吴光辉, 王立新, 等. 舰载机安全逃逸复飞的参数适配包线[J]. 北京航空航天大学学报, 2019, 45(9): 1777-1786. |
| LIN J M, WU G H, WANG L X, et al. Parameter suitability envelope for safety bolter of a carrier based aircraft [J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1777-1786 (in Chinese). | |
| [120] | 彭沛. 基于Simulink/Fluent舰载机触舰逃逸协同仿真[D]. 哈尔滨: 哈尔滨工程大学, 2022: 41-45. |
| PENG P. Cooperative Simulation of Ship-based Aircraft Contact and Escape based on Simulink/Fluent[D]. Harbin: Harbin Engineering University, 2022: 41-45 (in Chinese). | |
| [121] | 甄子洋, 江驹, 孙绍山, 等. 无人机集群作战协同控制与决策[M]. 北京: 国防工业出版社, 2022: 2-4. |
| ZHEN Z Y, JIANG J, SUN S S, et al. Unmanned aerial vehicle swarm cooperative control and decision-making for combat operations[M]. Beijing: National Defence Industry Press, 2022: 2-4 (in Chinese). | |
| [122] | 甄子洋, 江驹, 宋闯, 等. 无人飞行器制导控制与集群智能[M]. 北京: 科学出版社, 2024: 1-5. |
| ZHEN Z Y, JIANG J, SONG C, et al. UAV Guidance, Control, and Swarm Intelligence[M]. Beijing: Science Press, 2024: 1-5 (in Chinese). |
| [1] | Rongzu LI, Li LIU, Dun YANG. Optimal design of hydrogen-powered UAV based on multi-source domain fusion surrogate model [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 630979-630979. |
| [2] | Zhongke SHI. Qualitative theory for engineering system and its application to flight control [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531463-531463. |
| [3] | Jinwu XIANG, Kai MA, Zi KAN, Daochun LI, Kexin ZHENG, Hanxuan CHEN. Review of key technologies for hydrogen powered unmanned aerial vehicles [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531603-531603. |
| [4] | Zhenbing LUO, Hao WANG, Zhijie ZHAO. Theory of dual synthetic jets and its empowerment of advancements in aeronautical technology [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531821-531821. |
| [5] | Fujie WU, Bowen WANG, Jingya QI, Mingzhi CAO, Yingjun SANG, Sheng LI, Yuzhen ZHANG, Qian CHEN, Chao ZUO. A review of airborne multi-aperture panoramic image compositing [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 630505-630505. |
| [6] | Yiquan WU, Kang TONG. Research advances on deep learning-based small object detection in UAV aerial images [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 30848-030848. |
| [7] | Xiaochen LYU, Jingping SHI, Yongxi LYU, Gengnong LI. Flow angle reconstruction algorithm for MAGIC CARPET landing with sensor failure [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531159-531159. |
| [8] | Fang GUO, Wei HAN, Yujie LIU, Jie LIU, Xichao SU, Liangliang CHENG. Scheduling for maintenance and service support of carrier-based aircraft based on variable operation process [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531195-531195. |
| [9] | Yu LI, Tongwen CHEN, Zhigang WANG, Chiyung WEN, Xiaoxiong LIU. Incremental control of direct lift landing based on predefined-time theory [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531163-531163. |
| [10] | Wei CHEN, Lulu LI, Dong CHEN, Shaohui ZHANG, Yafei LI, Ke WANG, Yuanyuan JIN, Mingliang XU. Multi-aircraft cooperative decision-making methods driven by differentiated support demands for carrier-based aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 331274-331274. |
| [11] | Xudong CHEN, Qiqi CHEN, Yizhe LUO, Jiabao WANG, Mingliang XU. Dynamic parallel scheduling of heterogeneous carrier-based aircraft deck support operations [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531329-531329. |
| [12] | Ming YAN, Jiaxing WANG, Heqi LI, Kai LIU. Active disturbance rejection control of carrier-based aircraft based on offline network/online identification [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531317-531317. |
| [13] | Yuchun ZOU, Chenggang TAO, Ziyang ZHEN, Zhibin YIN, Yikun CHEN. Precision landing control based on direct force for flying-wing carrier-based aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531422-531422. |
| [14] | Zheng WANG, Hua WANG, Keke CUI, Chaochao LI, Junnan LIU, Mingliang XU. Locally guided reinforcement learning for autonomous dispatching of carrier-based aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531333-531333. |
| [15] | Xinze XU, Guanxin HONG, Liang DU, Gang LIU. Manual approach and landing model of carrier-based aircraft in complex environments [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531802-531802. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

