Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (17): 431717.doi: 10.7527/S1000-6893.2025.31717
• Material Engineering and Mechanical Manufacturing • Previous Articles
Jun ZOU1(
), Zhuyi CHEN2, Xiaoyu XIA1, Zhenyu FENG3
Received:2024-12-16
Revised:2025-01-14
Accepted:2025-05-26
Online:2025-06-06
Published:2025-06-05
Contact:
Jun ZOU
E-mail:jzou@cauc.edu.cn
Supported by:CLC Number:
Jun ZOU, Zhuyi CHEN, Xiaoyu XIA, Zhenyu FENG. Fatigue life analysis of selective laser melting Al-Mg-Sc-Zr alloy based on crack initiation and propagation[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 431717.
Table 1
Fatigue test results and geometry characteristics of critical defects
| 编号 | area1/2/μm | area | 裂纹源位置及类型 | l/μm | 缺陷圆度 | 疲劳寿命/cycle | ||
|---|---|---|---|---|---|---|---|---|
| TD 1# | 121.50 | 76.40 | 78.94 | 表面未熔合 | 38.04 | 0.58 | 61.6 | 1 472 168 |
| TD 2# | 135.00 | 47.84 | 53.74 | 表面未熔合 | 39.55 | 0.18 | 69.0 | 115 891 |
| TD 3# | 135.00 | 70.15 | 90.82 | 表面未熔合 | 58.8 | 0.21 | 74.6 | 49 841 |
| TD 4# | 148.50 | 55.50 | 55.50 | 表面未熔合 | 30.16 | 0.39 | 53.0 | 441 839 |
| TD 5# | 148.50 | 68.76 | 72.30 | 内部气孔 | 2 314.39 | 0.47 | 77.1 | 1 950 776 |
| TD 6# | 148.50 | 45.71 | 50.82 | 表面未熔合 | 22.13 | 0.34 | 61.9 | 444 394 |
| TD 7# | 162.00 | 54.95 | 60.14 | 表面未熔合 | 42.15 | 0.47 | 79.0 | 24 470 |
| TD 8# | 162.00 | 120.60 | 123.03 | 表面未熔合 | 49.92 | 0.61 | 44.4 | 19 174 |
| TD 9# | 162.00 | 61.13 | 77.81 | 表面未熔合 | 44.59 | 0.25 | 56.4 | 26 455 |
| TD 10# | 175.50 | 51.15 | 52.03 | 表面未熔合 | 31.12 | 0.64 | 63.7 | 24 658 |
| TD 11# | 175.50 | 41.24 | 42.31 | 表面未熔合 | 17.87 | 0.3 | 44.3 | 17 477 |
| TD 12# | 175.50 | 54.76 | 62.12 | 表面未熔合 | 19.74 | 0.36 | 34.6 | 21 974 |
| PD 1# | 135.00 | 116.38 | 131.30 | 表面未熔合 | 36.47 | 0.37 | 11.0 | 37 422 |
| PD 2# | 135.00 | 113.90 | 128.43 | 内部未熔合 | 451.04 | 0.71 | 74.8 | 655 162 |
| PD 3# | 148.50 | 67.74 | 80.30 | 表面未熔合 | 37.51 | 0.45 | 49.5 | 69 799 |
| PD 4# | 148.50 | 74.96 | 88.73 | 表面气孔 | 34.91 | 0.6 | 82.7 | 102 889 |
| PD 5# | 148.50 | 40.73 | 44.09 | 表面未熔合 | 10.56 | 0.19 | 2.8 | 179 919 |
| PD 6# | 148.50 | 117.51 | 131.85 | 内部未熔合 | 746.69 | 0.69 | 58.6 | 841 592 |
| PD 7# | 155.25 | 63.13 | 72.09 | 表面未熔合 | 26.55 | 0.29 | 15.2 | 71 272 |
| PD 8# | 155.25 | 41.46 | 65.18 | 表面气孔 | 25.08 | 0.26 | 25.1 | 95 560 |
| PD 9# | 155.25 | 119.02 | 121.91 | 内部气孔 | 1 100.16 | 0.56 | 81.2 | 553 775 |
| PD 10# | 162.00 | 53.98 | 67.60 | 表面气孔 | 32.37 | 0.46 | 54.3 | 42 178 |
| PD 11# | 162.00 | 79.04 | 87.20 | 表面未熔合 | 35.13 | 0.43 | 54.7 | 31 337 |
| PD 12# | 162.00 | 100.47 | 104.67 | 内部未熔合 | 408.81 | 0.69 | 37.8 | 398 848 |
| PD 13# | 168.75 | 112.83 | 118.06 | 内部未熔合 | 589.8 | 0.67 | 67.5 | 349 802 |
| PD 14# | 168.75 | 66.87 | 77.62 | 表面气孔 | 27.58 | 0.35 | 28.8 | 26 326 |
| PD 15# | 175.50 | 84.09 | 91.45 | 内部未熔合 | 853.33 | 0.48 | 69.9 | 466 572 |
| PD 16# | 175.50 | 62.75 | 71.14 | 表面未熔合 | 45.27 | 0.39 | 79.3 | 34 094 |
| [1] | ABOULKHAIR N T, SIMONELLI M, PARRY L, et al. 3D printing of aluminium alloys: Additive manufacturing of aluminium alloys using selective laser melting[J]. Progress in Materials Science, 2019, 106: 100578. |
| [2] | PLOCHER J, PANESAR A. Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures[J]. Materials & Design, 2019, 183: 108164. |
| [3] | 胡殿印, 潘锦超, 米栋, 等. 航空发动机增材制造结构强度、寿命评估与设计: 研究现状及展望[J]. 航空动力学报, 2022, 37(10): 2112-2126. |
| HU D Y, PAN J C, MI D, et al. Strength and lifetime assessment and design for additive manufacturing structures in aero-engine: Review and prospects[J]. Journal of Aerospace Power, 2022, 37(10): 2112-2126 (in Chinese). | |
| [4] | BAGEHORN S, MERTENS T, GREITEMEIER D, et al. Surface finishing of additive manufactured Ti-6Al-4V—A comparison of electrochemical and mechanical treatments[C]∥6th European Conference for Aeronautics and Space Sciences. Krakow: EUCASS, 2015. |
| [5] | BRANDL E, HECKENBERGER U, HOLZINGER V, et al. Additive manufactured AlSi10Mg samples using selective laser melting (SLM): Microstructure, high cycle fatigue, and fracture behavior[J]. Materials & Design, 2012, 34: 159-169. |
| [6] | BERETTA S, ROMANO S. A comparison of fatigue strength sensitivity to defects for materials manufactured by AM or traditional processes[J]. International Journal of Fatigue, 2017, 94: 178-191. |
| [7] | 邹亚桐, 魏正英, 杜军, 等. AlSi10Mg激光选区熔化成形工艺参数对致密度的影响与优化[J]. 应用激光, 2016, 36(6): 656. |
| ZOU Y T, WEI Z Y, DU J, et al. Effect and optimization of processing parameters on relative density of AlSi10Mg alloy parts by selective laser melting[J]. Applied Laser, 2016, 36(6): 656 (in Chinese). | |
| [8] | WANG S H, NING J S, ZHU L D, et al. Role of porosity defects in metal 3D printing: Formation mechanisms, impacts on properties and mitigation strategies[J]. Materials Today, 2022, 59: 133-160. |
| [9] | HU Y N, WU S C, WITHERS P J, et al. The effect of manufacturing defects on the fatigue life of selective laser melted Ti-6Al-4V structures[J]. Materials & Design, 2020, 192: 108708. |
| [10] | HU Y N, SHE Y F, WU S C, et al. Critical physics-informed fatigue life prediction of laser 3D printed AlSi10Mg alloys with mass internal defects[J]. International Journal of Mechanical Sciences, 2024, 284: 109730. |
| [11] | SCHMIDTKE K, PALM F, HAWKINS A, et al. Process and mechanical properties: Applicability of a scandium modified Al-alloy for laser additive manufacturing[J]. Physics Procedia, 2011, 12: 369-374. |
| [12] | 司瑞, 陈勇. 民用飞机增材制造技术应用发展趋势[J]. 航空学报, 2024, 45(5): 529677. |
| SI R, CHEN Y. Application trends of additive manufacturing technology for civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529677 (in Chinese). | |
| [13] | MASUO H, TANAKA Y, MOROKOSHI S, et al. Effects of defects, surface roughness and HIP on fatigue strength of Ti-6Al-4V manufactured by additive manufacturing[J]. Procedia Structural Integrity, 2017, 7: 19-26. |
| [14] | SPIERINGS A B, DAWSON K, DUMITRASCHKEWITZ P, et al. Microstructure characterization of SLM-processed Al-Mg-Sc-Zr alloy in the heat treated and HIPed condition[J]. Additive Manufacturing, 2018, 20: 173-181. |
| [15] | QIN Z H, KANG N, ZHANG F Y, et al. Role of defects on the high cycle fatigue behavior of selective laser melted Al-Mg-Sc-Zr alloy[J]. International Journal of Fracture, 2022, 235(1): 129-143. |
| [16] | HU Y N, WU S C, WU Z K, et al. A new approach to correlate the defect population with the fatigue life of selective laser melted Ti-6Al-4V alloy[J]. International Journal of Fatigue, 2020, 136: 105584. |
| [17] | ZHU M L, JIN L, XUAN F Z. Fatigue life and mechanistic modeling of interior micro-defect induced cracking in high cycle and very high cycle regimes[J]. Acta Materialia, 2018, 157: 259-275. |
| [18] | HU Y N, WU S C, XIE C, et al. Fatigue life evaluation of Ti-6Al-4V welded joints manufactured by electron beam melting[J]. Fatigue & Fracture of Engineering Materials & Structures, 2021, 44(8): 2210-2221. |
| [19] | LIU F L, HE C, CHEN Y, et al. Effects of defects on tensile and fatigue behaviors of selective laser melted titanium alloy in very high cycle regime[J]. International Journal of Fatigue, 2020, 140: 105795. |
| [20] | ZOU J, XIA X Y, FENG Z Y, et al. The fatigue mechanism and a new defect-based life prediction model for selective laser melted Al-Mg-Sc-Zr alloy[J]. International Journal of Fatigue, 2025, 190: 108590. |
| [21] | TORRIES B, SHAMSAEI N. Fatigue behavior and modeling of additively manufactured Ti-6Al-4V including interlayer time interval effects[J]. JOM, 2017, 69(12): 2698-2705. |
| [22] | ZHANG J M, LI J H, WU S C, et al. High-cycle and very-high-cycle fatigue lifetime prediction of additively manufactured AlSi10Mg via crystal plasticity finite element method[J]. International Journal of Fatigue, 2022, 155: 106577. |
| [23] | JIA Y F, FU R, LING C, et al. Fatigue life prediction based on a deep learning method for Ti-6Al-4V fabricated by laser powder bed fusion up to very-high-cycle fatigue regime[J]. International Journal of Fatigue, 2023, 172: 107645. |
| [24] | YU H, HU Y N, KANG G Z, et al. High-cycle fatigue life prediction of L-PBF AlSi10Mg alloys: A domain knowledge-guided symbolic regression approach[J]. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2024, 382(2264): 20220383. |
| [25] | ROMANO S, BRANDÃO A, GUMPINGER J, et al. Qualification of AM parts: Extreme value statistics applied to tomographic measurements[J]. Materials & Design, 2017, 131: 32-48. |
| [26] | MURAKAMI Y. Effects of small defects and nonmetallic inclusions [M]. Oxford: Elsevier, 2002. |
| [27] | WU Z K, WU S C, BAO J G, et al. The effect of defect population on the anisotropic fatigue resistance of AlSi10Mg alloy fabricated by laser powder bed fusion[J]. International Journal of Fatigue, 2021, 151: 106317. |
| [28] | SHIN C S, CAI C Q. Experimental and finite element analyses on stress intensity factors of an elliptical surface crack in a circular shaft under tension and bending[J]. International Journal of Fracture, 2004, 129(3): 239-264. |
| [29] | 吴圣川, 李存海, 张文, 等. 金属材料疲劳裂纹扩展机制及模型的研究进展[J]. 固体力学学报, 2019, 40(6): 489-538. |
| WU S C, LI C H, ZHANG W, et al. Recent research progress on mechanisms and models of fatigue crack growth for metallic materials[J]. Chinese Journal of Solid Mechanics, 2019, 40(6): 489-538 (in Chinese). | |
| [30] | WU S C, LI C H, LUO Y, et al. A uniaxial tensile behavior based fatigue crack growth model[J]. International Journal of Fatigue, 2020, 131: 105324. |
| [31] | ELBER W. The significance of fatigue crack closure[J]. ASTM STP 486, 1971, 230-242. |
| [32] | YADOLLAHI A, MAHMOUDI M, ELWANY A, et al. Fatigue-life prediction of additively manufactured material: Effects of heat treatment and build orientation[J]. Fatigue & Fracture of Engineering Materials & Structures, 2020, 43(4): 831-844. |
| [33] | SHIMATANI Y, SHIOZAWA K, NAKADA T, et al. The effect of the residual stresses generated by surface finishing methods on the very high cycle fatigue behavior of matrix HSS[J]. International Journal of Fatigue, 2011, 33(2): 122-131. |
| [34] | 冯振宇, 陈翥仪, 张雪峰, 等. 激光选区熔化Al-Mg-Sc-Zr合金各向组织与损伤容限性能[J]. 航空材料学报, 2024, 44(1): 143-151. |
| FENG Z Y, CHEN Z Y, ZHANG X F, et al. Microstructure and damage tolerance properties in different directions of selective laser melted Al-Mg-Sc-Zr alloy[J]. Journal of Aeronautical Materials, 2024, 44(1): 143-151 (in Chinese). |
| [1] | Qulong WEI, Lihong JIANG, Zheng LIU, Lin ZHU, Lianhai FAN, Guangang WANG, Mingjie ZHAO, Zhenghua GUO. Lattice structure and mechanical properties of TPMS prepared by selective laser melting [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(3): 430593-430593. |
| [2] | Zhenghua GUO, Zheng CHEN, Yida ZENG, Yiqian GUO, Zhenhua NIU, Zirui YANG, Zhiyong LI, Junwu WAN. Research status and prospects of refractory high-entropy alloys prepared by selective laser melting [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 29518-029518. |
| [3] | Yunlong ZHOU, Yi MA, Yingchun GUAN. Research progress on laser selective melting technology for high-performance manufacturing of aero-engines [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629508-629508. |
| [4] | QU Ruizhi, HUANG Liangpei, XIAO Dongming. Numerical simulation of melt pool evolution and metal spattering characterization during selective laser melting processing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525240-525240. |
| [5] | YANG Jiankai, GU Dongdong, GE Qing, TAN Chenchen, WEN Yu. Support layout and precise forming mechanism of aluminum alloy for laser additive manufacturing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525331-525331. |
| [6] | WANG Maosong, DU Yulei. Research progress of additive manufacturing of TiAl alloys [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 625263-625263. |
| [7] | GU Dongdong, ZHANG Han, LIU Gang, YANG Biqi. Process optimization of additive manufactured sandwich panel structure using rare earth element modified high-performance Al alloy [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524868-524868. |
| [8] | CAO Longchao, ZHOU Qi, HAN Yuanfei, SONG Bo, NIE Zhenguo, XIONG Yi, XIA Liang. Review on intelligent monitoring of defects and process control of selective laser melting additive manufacturing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(10): 524790-524790. |
| [9] | FENG Yiqi, XIE Guoyin, ZHANG Bi, QIAO Guowen, GAO Shang, BAI Qian. Influence of laser power and surface condition on balling behavior in selective laser melting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(12): 423089-423089. |
| [10] | LIN Huijie, SHEN Lida, JIANG Jinhui, XIE Deqiao, LIANG Huixin, FAN Qinchun. Simulation analysis of features of overhanging structure fabricated by selective laser melting [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(7): 421897-421897. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

