Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (6): 531672.doi: 10.7527/S1000-6893.2025.31672
• Electronics and Electrical Engineering and Control • Previous Articles
You HE1,2, Yu LIU1,2(
), Yaowen LI3, Ziran DING1, Kai DONG1, Yaqi CUI1, Caisheng ZHANG1, Xueqian WANG2, Zhi LI3, Chen GUO1
Received:2024-12-17
Revised:2024-12-30
Accepted:2025-02-10
Online:2025-02-19
Published:2025-02-10
Contact:
Yu LIU
E-mail:liuyu77360132@126.com
Supported by:CLC Number:
You HE, Yu LIU, Yaowen LI, Ziran DING, Kai DONG, Yaqi CUI, Caisheng ZHANG, Xueqian WANG, Zhi LI, Chen GUO. Development and prospects of multisource information fusion[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531672.
| 1 | GAO H B, CHENG B, WANG J Q, et al. Object classification using CNN-based fusion of vision and LIDAR in autonomous vehicle environment[J]. IEEE Transactions on Industrial Informatics, 2018, 14(9): 4224-4231. |
| 2 | YEONG D J, VELASCO-HERNANDEZ G, BARRY J, et al. Sensor and sensor fusion technology in autonomous vehicles: A review[J]. Sensors, 2021, 21(6): 2140. |
| 3 | WANG Q R, TIAN X Y, LI D C. Multimodal soft jumping robot with self-decision ability[J]. Smart Materials and Structures, 2021, 30(8): 085038. |
| 4 | HRAMOV A E, MAKSIMENKO V A, PISARCHIK A N. Physical principles of brain-computer interfaces and their applications for rehabilitation, robotics and control of human brain states[J]. Physics Reports, 2021, 918: 1-133. |
| 5 | NASEER N, HONG K S. fNIRS-based brain-computer interfaces: A review[J]. Frontiers in Human Neuroscience, 2015, 9: 3. |
| 6 | ABIRI R, BORHANI S, SELLERS E W, et al. A comprehensive review of EEG-based brain-computer interface paradigms[J]. Journal of Neural Engineering, 2019, 16(1): 011001. |
| 7 | 朱军. 会思考的硬核“椰城”: 城市大脑塑造未来科幻城市[J]. 互联网经济, 2020(S2): 68-71. |
| ZHU J. Thinking hard-core “coconut city”: The urban brain shapes the future science fiction city[J]. Digital Economy, 2020(S2): 68-71 (in Chinese). | |
| 8 | 周光霞. 美军联合信息环境建设情况分析及启示[J]. 指挥与控制学报, 2016, 2(4): 354-360. |
| ZHOU G X. On JIE and its enlightenment to developments of networking information-centric system of systems[J]. Journal of Command and Control, 2016, 2(4): 354-360 (in Chinese). | |
| 9 | OpenAI. Video generation models as world simulators [EB/OL]. (2024-02-16) . |
| 10 | 何友, 王国宏, 陆大䋮, 等. 多传感器信息融合及应用[M]. 北京: 电子工业出版社, 2000. |
| HE Y, WANG G H, LU D J, et al. Multisensor information fusion with applications[M]. Beijing: Publishing House of Electronics Industry, 2000 (in Chinese). | |
| 11 | CIUONZO D, ROSSI P S, VARSHNEY P K. Distributed detection in wireless sensor networks under multiplicative fading via generalized score tests[J]. IEEE Internet of Things Journal, 2021, 8(11): 9059-9071. |
| 12 | LI C X, LI G, VARSHNEY P K. Distributed detection of sparse signals with censoring sensors in clustered sensor networks[J]. Information Fusion, 2022, 83: 1-18. |
| 13 | WANG X Q, LI G, QUAN C, et al. Distributed detection of sparse stochastic signals with quantized measurements: The generalized Gaussian case[J]. IEEE Transactions on Signal Processing, 2019, 67(18): 4886-4898. |
| 14 | VARSHNEY P K. Distributed detection and data fusion[M]. New York: Springer, 1997. |
| 15 | ABRARDO A, BARNI M, KALLAS K, et al. Information fusion in distributed sensor networks with Byzantines[M]. Singapore: Springer, 2021. |
| 16 | KAYAALP M, BORDIGNON V, SAYED A H. Social opinion formation and decision making under communication trends[J]. IEEE Transactions on Signal Processing, 2024, 72: 506-520. |
| 17 | VLASKI S, KAR S, SAYED A H, et al. Networked signal and information processing: Learning by multiagent systems[J]. IEEE Signal Processing Magazine, 2023, 40(5): 92-105. |
| 18 | QUAN C, SRIRANGA N, YANG H D, et al. Efficient ordered-transmission based distributed detection under data falsification attacks[J]. IEEE Signal Processing Letters, 2023, 30: 145-149. |
| 19 | TORRA V, NARUKAWA Y. Modeling decisions: Information fusion and aggregation operators[M]. Berlin: Springer, 2007. |
| 20 | HALL D, CHONG C Y, LLINAS J, et al. Distributed data fusion for network-centric operations[M]. Boca Raton: CRC Press, 2013. |
| 21 | YEOM S W, KIRUBARAJAN T, BAR-SHALOM Y. Track segment association, fine-step IMM and initialization with Doppler for improved track performance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 293-309. |
| 22 | 杜渐, 夏学知. 面向航迹中断的模糊航迹关联算法[J]. 火力与指挥控制, 2013, 38(6): 68-71, 76. |
| DU J, XIA X Z. A fuzzy track association algorithm in track interrupt-oriented[J]. Fire Control & Command Control, 2013, 38(6): 68-71, 76 (in Chinese). | |
| 23 | 何友, 彭应宁, 陆大䋮, 等. 分布式多传感器数据融合中的双门限航迹相关算法[J]. 电子科学学刊, 1997, 19(6): 721-728. |
| HE Y, PENG Y N, LU D J, et al. Binary track correlation algorithms in a distributed multisensor data fusion system[J]. Journal of Electronics & Information Technology, 1997, 19(6): 721-728 (in Chinese). | |
| 24 | 何友, 陆大䋮, 彭应宁, 等. 基于模糊综合函数的航迹关联算法[J]. 电子科学学刊, 1999, 21(1): 91-96. |
| HE Y, LU D J, PENG Y N, et al. Track correlation algorithms based on fuzzy synthetic function[J]. Journal of Electronics & Information Technology, 1999, 21(1): 91-96 (in Chinese). | |
| 25 | 徐毓, 金以慧. 基于多尺度小波变换和短时分形理论的航迹关联方法[J]. 控制与决策, 2003, 18(4): 432-435, 440. |
| XU Y, JIN Y H. Target tracks association based on multi-resolution wavelet transform and short-time fractal[J]. Control and Decision, 2003, 18(4): 432-435, 440 (in Chinese). | |
| 26 | TIAN W, WANG Y, SHAN X M, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4): 449-453. |
| 27 | 何友, 宋强, 熊伟. 基于相位相关的航迹对准关联技术[J]. 电子学报, 2010, 38(12): 2718-2723. |
| HE Y, SONG Q, XIONG W. Track alignment-correlation technique based on phase correlation[J]. Acta Electronica Sinica, 2010, 38(12): 2718-2723 (in Chinese). | |
| 28 | XIONG W, XU P L, CUI Y Q, et al. Track segment association with dual contrast neural network[J]. IEEE Transactions on Aerospace and Electronic Systems, 2022, 58(1): 247-261. |
| 29 | XIONG W, XU P L, CUI Y Q. HTG-TA: Heterogenous track graph for asynchronous track-to-track association[J]. IEEE Transactions on Aerospace and Electronic Systems, 2024, 60(5): 7232-7250. |
| 30 | JIN B, TANG Y F, ZHANG Z K, et al. Radar and AIS track association integrated track and scene features through deep learning[J]. IEEE Sensors Journal, 2023, 23(7): 8001-8009. |
| 31 | APTOULA E. Remote sensing image retrieval with global morphological texture descriptors[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 3023-3034. |
| 32 | XIE J, FANG Y, ZHU F, et al. Deepshape: Deep learned shape descriptor for 3D shape matching and retrieval[C]∥2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2015: 1275-1283. |
| 33 | LI P, REN P, ZHANG X Y, et al. Region-wise deep feature representation for remote sensing images[J]. Remote Sensing, 2018, 10(6): 871. |
| 34 | XIONG W, XIONG Z Y, CUI Y Q, et al. A discriminative distillation network for cross-source remote sensing image retrieval[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1234-1247. |
| 35 | CHEN H, DING G G, LIU X D, et al. IMRAM: Iterative matching with recurrent attention memory for cross-modal image-text retrieval[C]∥2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2020: 12652-12660. |
| 36 | CHI P D, FENG Y, ZHOU M L, et al. TIAR: Text-Image-audio retrieval with weighted multimodal re-ranking[J]. Applied Intelligence, 2023, 53(19): 22898-22916. |
| 37 | ARAUJO A, GIROD B. Large-scale video retrieval using image queries[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2018, 28(6): 1406-1420. |
| 38 | HOTELLING H. Relations between two sets of variates[M]∥Breakthroughs in Statistics. New York: Springer, 1992: 162-190. |
| 39 | LV Y F, XIONG W, ZHANG X H, et al. Fusion-based correlation learning model for cross-modal remote sensing image retrieval[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 6503205. |
| 40 | 李浩然, 熊伟, 崔亚奇, 等. 相似度矩阵辅助遥感图像无监督哈希跨模态关联[J]. 光子学报, 2023, 52(1): 216-227. |
| LI H R, XIONG W, CUI Y Q, et al. Enhancing remote sensing image unsupervised hashing cross-modal correlation with similarity matrix[J]. Acta Photonica Sinica, 2023, 52(1): 216-227 (in Chinese). | |
| 41 | QIN Z, ZHAO P B, ZHUANG T M, et al. A survey of identity recognition via data fusion and feature learning[J]. Information Fusion, 2023, 91: 694-712. |
| 42 | 徐从富, 耿卫东, 潘云鹤. 面向数据融合的DS方法综述[J]. 电子学报, 2001, 29(3): 393-396. |
| XU C F, GENG W D, PAN Y H. Review of dempster shafer method for data fusion[J]. Acta Electronica Sinica, 2001, 29(3): 393-396 (in Chinese). | |
| 43 | ZHAO J, DENG Y. Complex network modeling of evidence theory[J]. IEEE Transactions on Fuzzy Systems, 2021, 29(11): 3470-3480. |
| 44 | LIU HZ, YANG WQ. Bayesian method and its application to multiple level decision fusion with distributed sensors[J]. Transactions of Beijing Institute of Technology, 1998, 5: 536-540. |
| 45 | CHEN, S M, CHANG, Y C. Fuzzy decision making based on similarity measures and OWA operators[J]. Fuzzy Sets and Systems, 2008, 159(12): 1437-1454. |
| 46 | LI H, WU X J, DURRANI T S. Infrared and visible image fusion with ResNet and zero-phase component analysis[J]. Infrared Physics & Technology, 2019, 102: 103039. |
| 47 | WANG H M, AN W B, LI L, et al. Infrared and visible image fusion based on multi-channel convolutional neural network[J]. IET Image Processing, 2022, 16(6): 1575-1584. |
| 48 | HOU R C, ZHOU D M, NIE R C, et al. VIF-net: An unsupervised framework for infrared and visible image fusion[J]. IEEE Transactions on Computational Imaging, 2020, 6: 640-651. |
| 49 | MA J Y, YU W, LIANG P W, et al. FusionGAN: A generative adversarial network for infrared and visible image fusion[J]. Information Fusion, 2019, 48: 11-26. |
| 50 | RAO D Y, XU T Y, WU X J. TGFuse: An infrared and visible image fusion approach based on transformer and generative adversarial network[J]. IEEE Transactions on Image Processing, 2023, 1-12. |
| 51 | GANIN Y, USTINOVA E, AJAKAN H, et al. Domain-adversarial training of neural networks[DB/OL]. arXiv preprint: 1505. 07818, 2016. |
| 52 | ZHU J Y, PARK T, ISOLA P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 2242-2251. |
| 53 | HONG D F, YOKOYA N, XIA G S, et al. X-ModalNet: A semi-supervised deep cross-modal network for classification of remote sensing data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 167: 12-23. |
| 54 | FENG Z X, SONG L L, YANG S Y, et al. Cross-modal contrastive learning for remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5517713. |
| 55 | HOFFMANN D S, CLASEN K N, DEMIR B. Transformer-based multi-modal learning for multi-label remote sensing image classification[C]∥IGARSS 2023-2023 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2023: 4891-4894. |
| 56 | BAHADURI B, MING Z H, FENG F C, et al. Multimodal transformer using cross-channel attention for object detection in remote sensing images[C]∥2024 IEEE International Conference on Image Processing (ICIP). Piscataway: IEEE Press, 2024: 2620-2626. |
| 57 | ZHANG F, BI X Y, ZHANG Z X, et al. HIFR-net: A HRRP-infrared fusion recognition network capable of handling modality missing and multisource data misalignment[J]. IEEE Sensors Journal, 2025, 25(3): 5769-5781. |
| 58 | 韩崇昭, 朱洪艳, 段战胜. 多源信息融合[M]. 第3版. 北京: 清华大学出版社, 2022. |
| HAN C Z, ZHU H Y, DUAN Z S. Multisource information fusion[M]. 3rd ed. Beijing: Tsinghua University Press, 2022 (in Chinese). | |
| 59 | ZHU Y M, YOU Z S, ZHAO J, et al. The optimality for the distributed Kalman filtering fusion with feedback[J]. Automatica, 2001, 37(9): 1489-1493. |
| 60 | JULIER S J, UHLMANN J K. A non-divergent estimation algorithm in the presence of unknown correlations[C]∥Proceedings of the 1997 American Control Conference. Piscataway: IEEE Press, 1997: 2369-2373. |
| 61 | FARRELL W J, GANESH C. Generalized chernoff fusion approximation for practical distributed data fusion[C]∥2009 12th International Conference on Information Fusion. Piscataway: IEEE Press, 2009: 555-562. |
| 62 | REINHARDT M, NOACK B, ARAMBEL P O, et al. Minimum covariance bounds for the fusion under unknown correlations[J]. IEEE Signal Processing Letters, 2015, 22(9): 1210-1214. |
| 63 | SIJS J, LAZAR M. State fusion with unknown correlation: Ellipsoidal intersection[J]. Automatica, 2012, 48(8): 1874-1878. |
| 64 | NOACK B, SIJS J, REINHARDT M, et al. Decentralized data fusion with inverse covariance intersection[J]. Automatica, 2017, 79: 35-41. |
| 65 | REECE S, ROBERTS S. Generalised covariance union: A unified approach to hypothesis merging in tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2010, 46(1): 207-221. |
| 66 | SHAFIEEZADEH-ABADEH S, NGUYEN V A, KUHN D, et al. Wasserstein distributionally robust Kalman filtering[C]∥Proceedings of the 32nd International Conference on Neural Information Processing Systems. New York: ACM, 2018: 8483-8492. |
| 67 | WANG S X, WU Z M, LIM A. Robust state estimation for linear systems under distributional uncertainty[J]. IEEE Transactions on Signal Processing, 2021, 69: 5963-5978. |
| 68 | ZORZI M. Distributed Kalman filtering under model uncertainty[J]. IEEE Transactions on Control of Network Systems, 2020, 7(2): 990-1001. |
| 69 | YU X K, LI J X. Distributed robust Kalman filters under model uncertainty and multiplicative disturbance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 973-988. |
| 70 | NIU D B, SONG E B, LI Z, et al. A marginal distributionally robust MMSE estimation for a multisensor system with Kullback-Leibler divergence constraints[J]. IEEE Transactions on Signal Processing, 2023, 71: 3772-3787. |
| 71 | HAGE J AL, NAJJAR M E EL, POMORSKI D. Multi-sensor fusion approach with fault detection and exclusion based on the Kullback-Leibler divergence: Application on collaborative multi-robot system[J]. Information Fusion, 2017, 37: 61-76. |
| 72 | BAR-SHALOM Y. Update with out-of-sequence measurements in tracking: Exact solution[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(3): 769-777. |
| 73 | BAR-SHALOM Y, CHEN H M, MALLICK M. One-step solution for the multistep out-of-sequence-measurement problem in tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1): 27-37. |
| 74 | GOVAERS F, KOCH W. Generalized solution to smoothing and out-of-sequence processing[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(3): 1739-1748. |
| 75 | KIM Y, HONG K, BANG H. Utilizing out-of-sequence measurement for ambiguous update in particle filtering[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(1): 493-501. |
| 76 | ZHANG S, BAR-SHALOM Y. Optimal update with multiple out-of-sequence measurements with arbitrary arriving order[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(4): 3116-3132. |
| 77 | GARCÍA-FERNÁNDEZ Á F, YI W. Continuous-discrete multiple target tracking with out-of-sequence measurements[J]. IEEE Transactions on Signal Processing, 2021, 69: 4699-4709. |
| 78 | MARELLI D, SUI T J, FU M Y. Distributed Kalman estimation with decoupled local filters[J]. Automatica, 2021, 130: 109724. |
| 79 | BATTISTELLI G, CHISCI L. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability[J]. Automatica, 2014, 50(3): 707-718. |
| 80 | BATTISTELLI G, CHISCI L, MUGNAI G, et al. Consensus-based linear and nonlinear filtering[J]. IEEE Transactions on Automatic Control, 2015, 60(5): 1410-1415. |
| 81 | 金浩. 多传感器网络化系统的分布式估计算法研究[D]. 哈尔滨: 黑龙江大学, 2022. |
| JIN H. Research on distributed estimation algorithm of multi-sensor networked system[D]. Harbin: Helongjiang University, 2022 (in Chinese). | |
| 82 | LI Y Z, QUEVEDO D E, LAU V, et al. Optimal periodic transmission power schedules for remote estimation of ARMA processes[J]. IEEE Transactions on Signal Processing, 2013, 61(24): 6164-6174. |
| 83 | DEKKERS G, ROSAS F, VAN WATERSCHOOT T, et al. Dynamic sensor activation and decision-level fusion in wireless acoustic sensor networks for classification of domestic activities[J]. Information Fusion, 2022, 77: 196-210. |
| 84 | ZHOU J M, GU G X, CHEN X. Distributed Kalman filtering over wireless sensor networks in the presence of data packet drops[J]. IEEE Transactions on Automatic Control, 2019, 64(4): 1603-1610. |
| 85 | YANG H J, LI H, XIA Y Q, et al. Distributed Kalman filtering over sensor networks with transmission delays[J]. IEEE Transactions on Cybernetics, 2021, 51(11): 5511-5521. |
| 86 | LIU H, NIU B, LI Y Z. False-data-injection attacks on remote distributed consensus estimation[J]. IEEE Transactions on Cybernetics, 2022, 52(1): 433-443. |
| 87 | YANG W, ZHANG Y, CHEN G R, et al. Distributed filtering under false data injection attacks[J]. Automatica, 2019, 102: 34-44. |
| 88 | LI L, YANG H, XIA Y Q, et al. Event-based distributed state estimation for linear systems under unknown input and false data injection attack[J]. Signal Processing, 2020, 170: 107423. |
| 89 | LYNEN S, ACHTELIK M W, WEISS S, et al. A robust and modular multi-sensor fusion approach applied to MAV navigation[C]∥2013 IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway: IEEE Press, 2013: 3923-3929. |
| 90 | TANG X L, ZHANG Z Q, QIN Y C. On-road object detection and tracking based on radar and vision fusion: A review[J]. IEEE Intelligent Transportation Systems Magazine, 2022, 14(5): 103-128. |
| 91 | MAHFOUZ S, MOURAD-CHEHADE F, HONEINE P, et al. Target tracking using machine learning and Kalman filter in wireless sensor networks[J]. IEEE Sensors Journal, 2014, 14(10): 3715-3725. |
| 92 | ZHANG Y, SONG B, DU X J, et al. Vehicle tracking using surveillance with multimodal data fusion[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(7): 2353-2361. |
| 93 | CAO J W, ZHANG H Y, JIN L S, et al. A review of object tracking methods: From general field to autonomous vehicles[J]. Neurocomputing, 2024, 585: 127635. |
| 94 | FAN L W, ZHANG F, FAN H, et al. Brief review of image denoising techniques[J]. Visual Computing for Industry, Biomedicine, and Art, 2019, 2(1): 7. |
| 95 | HASKINS G, KRUGER U, YAN P K. Deep learning in medical image registration: A survey[J]. Machine Vision and Applications, 2020, 31(1): 8. |
| 96 | LI G. Advanced Sparsity-Driven Models and Methods for Radar Applications[M]. Stevenage: SciTech Publishing Inc., 2020. |
| 97 | LI S, KANG X, FANG L, et al. Pixel-level image fusion: A survey of the state of the art[J]. Information Fusion, 2017, 33: 100-112. |
| 98 | WRIGHT J, YANG A Y, GANESH A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2): 210-227. |
| 99 | GKILLAS A, AMPELIOTIS D, BERBERIDIS K. Connections between deep equilibrium and sparse representation models with application to hyperspectral image denoising[J]. IEEE Transactions on Image Processing, 2023, 32: 1513-1528. |
| 100 | AHARON M, ELAD M, BRUCKSTEIN A. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322. |
| 101 | SCETBON M, ELAD M, MILANFAR P. Deep K-SVD denoising[J]. IEEE Transactions on Image Processing, 2021, 30: 5944-5955. |
| 102 | ZHANG H, XU H, TIAN X, et al. Image fusion meets deep learning: A survey and perspective. Information Fusion, 2021, 76: 323-336. |
| 103 | LI H, WU X J. DenseFuse: A fusion approach to infrared and visible images[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2614-2623. |
| 104 | ZHAO F, ZHAO W D, YAO L B, et al. Self-supervised feature adaption for infrared and visible image fusion[J]. Information Fusion, 2021, 76: 189-203. |
| 105 | LIU J Y, WU Y H, HUANG Z B, et al. SMoA: Searching a modality-oriented architecture for infrared and visible image fusion[J]. IEEE Signal Processing Letters, 2021, 28: 1818-1822. |
| 106 | XU H, WANG X Y, MA J Y. DRF: Disentangled representation for visible and infrared image fusion[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 5006713. |
| 107 | TANG L F, YUAN J T, MA J Y. Image fusion in the loop of high-level vision tasks: A semantic-aware real-time infrared and visible image fusion network[J]. Information Fusion, 2022, 82: 28-42. |
| 108 | LI J, HUO H T, LIU K J, et al. Infrared and visible image fusion using dual discriminators generative adversarial networks with Wasserstein distance[J]. Information Sciences, 2020, 529: 28-41. |
| 109 | GU Y S, WANG X Y, ZHANG C, et al. Advanced driving assistance based on the fusion of infrared and visible images[J]. Entropy, 2021, 23(2): 239. |
| 110 | WANG X Q, ZHU D, LI G, et al. Proposal-copula-based fusion of spaceborne and airborne SAR images for ship target detection[J]. Information Fusion, 2022, 77: 247-260. |
| 111 | LI W M, WANG X Q, LI G, et al. NN-copula-CD: A copula-guided interpretable neural network for change detection in heterogeneous remote sensing images[DB/OL]. arXiv preprint: 2303.17448, 2023. |
| 112 | FANG Q Y, WANG Z K. Cross-modality attentive feature fusion for object detection in multispectral remote sensing imagery[J]. Pattern Recognition, 2022, 130: 108786. |
| 113 | WANG Q W, CHI Y K, SHEN T, et al. Improving RGB-infrared object detection by reducing cross-modality redundancy[J]. Remote Sensing, 2022, 14(9): 2020. |
| 114 | JIANG X, LI G, LIU Y, et al. Change detection in heterogeneous optical and SAR remote sensing images via deep homogeneous feature fusion[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 1551-1566. |
| 115 | MATASCI G, PLANTE J, KASA K, et al. Deep learning for vessel detection and identification from spaceborne optical imagery[J]. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2021, V-3-2021: 303-310. |
| 116 | ZHANG L P, LIU Y, WANG X Q, et al. GLRT-based metric learning for remote sensing object retrieval[DB/OL]. arXiv preprint: 2410.05773, 2024. |
| 117 | XIAO G, BAVIRISETTI D P, LIU G, et al. Image fusion[M]. Singapore: Springer, 2020. |
| 118 | LIU C X, YANG H, FU J L, et al. Learning trajectory-aware transformer for video super-resolution[C]∥2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2022: 5677-5686. |
| 119 | IRVIN J A, LIU E R, CHEN J C, et al. TEOChat: A large vision-language assistant for temporal earth observation data[DB/OL]. arXiv preprint: 2410.06234, 2024. |
| 120 | GAONKAR A, CHUKKAPALLI Y, RAMAN P J, et al. A comprehensive survey on multimodal data representation and information fusion algorithms[C]∥2021 International Conference on Intelligent Technologies (CONIT). Piscataway: IEEE Press, 2021: 1-8. |
| 121 | KLUPACS J, GOSTAR A K, RATHNAYAKE T, et al. Multiagent information fusion for connected driving: A review[J]. IEEE Access, 2022, 10: 85030-85049. |
| 122 | LIN S Z, HAN Z, LI D W, et al. Integrating model- and data-driven methods for synchronous adaptive multi-band image fusion[J]. Information Fusion, 2020, 54: 145-160. |
| 123 | WEN J T, JIANG D Z, TU G, et al. Dynamic interactive multiview memory network for emotion recognition in conversation[J]. Information Fusion, 2023, 91(C): 123-133. |
| 124 | XU J, REN Y Z, SHI X S, et al. UNTIE: Clustering analysis with disentanglement in multi-view information fusion[J]. Information Fusion, 2023, 100: 101937. |
| 125 | NIE F P, LI Z H, WANG R, et al. An effective and efficient algorithm for K-means clustering with new formulation[J]. IEEE Transactions on Knowledge and Data Engineering, 2023, 35(4): 3433-3443. |
| 126 | LIU T, ZHOU Z, YANG L J. Layered isolation forest: A multi-level subspace algorithm for improving isolation forest[J]. Neurocomputing, 2024, 581: 127525. |
| 127 | DU J X, HAN G J, LIN C, et al. ITrust: An anomaly-resilient trust model based on isolation forest for underwater acoustic sensor networks[J]. IEEE Transactions on Mobile Computing, 2022, 21(5): 1684-1696. |
| 128 | ZHANG P, HE F Z, ZHANG H, et al. Real-time malicious traffic detection with online isolation forest over SD-WAN[J]. IEEE Transactions on Information Forensics and Security, 2023, 18: 2076-2090. |
| 129 | YANG C, LIU T T, CHEN G H, et al. ICSFF: Information constraint on self-supervised feature fusion for few-shot remote sensing image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5800312. |
| 130 | ZHANG Y X, LI W, ZHANG M M, et al. Graph information aggregation cross-domain few-shot learning for hyperspectral image classification[J]. IEEE Transactions on Neural Networks and Learning Systems, 2024, 35(2): 1912-1925. |
| 131 | WU L K, LI Z, ZHAO H K, et al. Recognizing unseen objects via multimodal intensive knowledge graph propagation[C]∥Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York: ACM, 2023: 2618-2628. |
| 132 | JIANG X, LI G, ZHANG X P, et al. A semisupervised Siamese network for efficient change detection in heterogeneous remote sensing images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 4700718. |
| 133 | CHUN D, LEE S, KIM H. USD: Uncertainty-based one-phase learning to enhance pseudo-label reliability for semi-supervised object detection[J]. IEEE Transactions on Multimedia, 2024, 26: 6336-6347. |
| 134 | ZHOU Z, ZHAO L J, JI K F, et al. A domain-adaptive few-shot SAR ship detection algorithm driven by the latent similarity between optical and SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5216318. |
| 135 | HU H X, LIN Z Z, HU Q, et al. Multi-source information fusion based DLaaS for traffic flow prediction[J]. IEEE Transactions on Computers, 2024, 73(4): 994-1003. |
| 136 | GUO Y, LIU R W, QU J X, et al. Asynchronous trajectory matching-based multimodal maritime data fusion for vessel traffic surveillance in inland waterways[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 24(11): 12779-12792. |
| 137 | LIU Y, LIU J, YANG K, et al. AMP-net: Appearance-motion prototype network assisted automatic video anomaly detection system[J]. IEEE Transactions on Industrial Informatics, 2024, 20(2): 2843-2855. |
| 138 | 李伯虎. 云制造系统3.0: 一种适应新时代、新态势、新征程的先进智能制造系统[J]. 电气时代, 2022(1): 18-19. |
| LI B H. Cloud manufacturing system 3.0-an advanced intelligent manufacturing system adapted to the new era, new situation and new journey[J]. Electric Age, 2022(1): 18-19 (in Chinese). | |
| 139 | MINNETT P J, ALVERA-AZCÁRATE A, CHIN T M, et al. Half a century of satellite remote sensing of sea-surface temperature[J]. Remote Sensing of Environment, 2019, 233: 111366. |
| 140 | YANG G, YE Q H, XIA J. Unbox the black-box for the medical explainable AI via multi-modal and multi-centre data fusion: A mini-review, two showcases and beyond[J]. Information Fusion, 2022, 77: 29-52. |
| 141 | UDDIN M Z, HASSAN M M, ALSANAD A, et al. A body sensor data fusion and deep recurrent neural network-based behavior recognition approach for robust healthcare[J]. Information Fusion, 2020, 55: 105-115. |
| 142 | ZHANG Y D, DONG Z C, WANG S H, et al. Advances in multimodal data fusion in neuroimaging: Overview, challenges, and novel orientation[J]. Information Fusion, 2020, 64: 149-187. |
| 143 | JI B F, ZHANG X R, MUMTAZ S, et al. Survey on the Internet of vehicles: Network architectures and applications[J]. IEEE Communications Standards Magazine, 2020, 4(1): 34-41. |
| 144 | 汲克山, 刘思培, 李清玉, 等. 大模型在军事领域的应用与展望[C]∥第十二届中国指挥控制大会, 2024: 79-83. |
| JI K S, LIU S P, LI Q Y, et al. The application and prospect of large models in the military field[C]∥The 12th China Command and Control Conference, 2024: 79-83 (in Chinese). | |
| 145 | PHAM H, GUAN M Y, ZOPH B, et al. Efficient neural architecture search via parameter sharing[C]∥International Conference on Machine Learning, 2018: 4095-4104. |
| 146 | RAKKA M, FOUDA M E, KHARGONEKAR P, et al. A review of state-of-the-art mixed-precision neural network frameworks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2024, 46(12): 7793-7812. |
| 147 | WAN F, HUANG X, CAI D, et al. Knowledge fusion of large language models[DB/OL]. arXiv preprint: 2401. 10491, 2024. |
| 148 | ZHANG W, CAI M X, ZHANG T, et al. EarthGPT: A universal multimodal large language model for multisensor image comprehension in remote sensing domain[J]. IEEE Transactions on Geoscience and Remote Sensing, 2024, 62: 5917820. |
| 149 | 卢策吾, 王鹤. 具身智能(embodied artificial intelligence)[EB/OL]. (2023-07-22) [2025-02-02]. . |
| LU C, WANG H. Embodied AI(embodied artificial intelligence)[EB/OL]. (2023-07-22) [2025-02-02]. . | |
| 150 | LI S J, YU H X, DING W B, et al. Visual-tactile fusion for transparent object grasping in complex backgrounds[J]. IEEE Transactions on Robotics, 2023, 39(5): 3838-3856. |
| [1] | Qing GUO, Xiaoyang LIU, Junfeng FAN, Yu FU, Hongfu ZUO. Adaptive gas path fault diagnosis method of civil aviation engine fusing prior information [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 230871-230871. |
| [2] | Chunhui ZHAO, Anmeng LIU, Yang LYU, Quan PAN. A survey of resilient self-localization for UAV [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28839-028839. |
| [3] | Chunhua LI, Jianzhong SUN, Jilong LU. Maintenance-oriented approach for HPT blade life digital twin modeling [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 629385-629385. |
| [4] | Yunlong ZHOU, Yi MA, Yingchun GUAN. Research progress on laser selective melting technology for high-performance manufacturing of aero-engines [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629508-629508. |
| [5] | Jinyi MA, Can WANG, Tao XUE, Jianliang AI, Yiqun DONG. Development and illustrative applications of an air combat engagement database [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S1): 727538-727538. |
| [6] | Weishi CHEN, Jia LIU, Qingbin WANG, Xianfeng LU, Jie ZHANG, Xiaolong CHEN, Yifeng HUANG. Review on technology of bird detection with weather radar [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 26781-026781. |
| [7] | Lei HE, Weiqi QIAN, Kangsheng DONG, Xian YI, Congcong CHAI. Aerodynamic characteristics modeling of iced airfoil based on convolution neural networks [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126434-126434. |
| [8] | Yiming LIANG, Guangning LI, Min XU. Method for numerical virtual flight with intelligent control based on machine learning [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128098-81280986. |
| [9] | Xiaoqian CHEN, Yong ZHAO, Senlin HUO, Zeyu ZHANG, Bingxiao DU. A review of topology optimization design methods for multi-scale structures [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528863-528863. |
| [10] | Tao WANG, Xuefeng GAO, Jinping ZHU, Song DONG, Lianjun SUN, Kan ZHENG. Chatter online monitoring of robotic longitudinal⁃torsional ultrasonic edge trimming [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(13): 262-272. |
| [11] | Chao WEN, Wenhan DONG, XIE Wujie, Ming CAI, Ri LIU. Distributed cooperative area search method for UAV swarms based on revisit mechanism [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(11): 327561-327561. |
| [12] | DUAN Yucong, WANG Xuede, ZHOU Xin, ZHANG Peiyu, GUO Xiyang, CHENG Xing, FAN Junwei. Machine learning of emission intensity signal of laser powder bed fusion molten pool [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 425855-425855. |
| [13] | LIN Jing, ZHANG Boyao, ZHANG Dayi, CHEN Min. Research status and prospect of fault diagnosis for gas turbine aeroengine [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 626565-626565. |
| [14] | LI Haiquan, CHEN Xiaoqian, ZUO Linxuan, ZHAO Zhuolin. Surrogate model for flight load analysis based on random forest [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 225640-225640. |
| [15] | WU Zixuan, ZHANG Ning, GAO Kaiye, PENG Rui. Flight trip fuel volume prediction based on random forest with adjustment to risk preference [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(2): 224933-224933. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

