Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (17): 131549.doi: 10.7527/S1000-6893.2025.31549
• Fluid Mechanics and Flight Mechanics • Previous Articles Next Articles
Jianxin HAO, Qiang WANG, Haiyang HU(
)
Received:2024-11-19
Revised:2024-12-05
Accepted:2025-01-22
Online:2025-02-10
Published:2025-02-06
Contact:
Haiyang HU
E-mail:09451@buaa.edu.cn
Supported by:CLC Number:
Jianxin HAO, Qiang WANG, Haiyang HU. Infrared radiation characteristics of turbulent gas jets based on improved SGS-TRI model[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(17): 131549.
| [1] | PAL G, GUPTA A, MODEST M F, et al. Comparison of accuracy and computational expense of radiation models in simulation of non-premixed turbulent jet flames[J]. Combustion and Flame, 2015, 162(6): 2487-2495. |
| [2] | 马晓平, 赵良玉. 红外导引头关键技术国内外研究现状综述[J]. 航空兵器, 2018, 25(3): 3-10. |
| MA X P, ZHAO L Y. An overview of infrared seeker key technologies at home and abroad[J]. Aero Weaponry, 2018, 25(3): 3-10 (in Chinese). | |
| [3] | AJDARI E, GUTMARK E, PARR T P, et al. Thermal imaging of afterburning plumes[J]. Journal of Propulsion and Power, 1991, 7(6): 873-878. |
| [4] | KABASHNIKOV V P, MYASNIKOVA G I. Thermal radiation in turbulent flows: Temperature and concentration fluctuations[J]. Heat Transfer-Soviet Research, 1985, 17(6): 116-125. |
| [5] | LIU L H, XU X, CHEN Y L. On the shapes of the presumed probability density function for the modeling of turbulence-radiation interactions[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2004, 87(3/4): 311-323. |
| [6] | SNEGIREV A Y. Statistical modeling of thermal radiation transfer in buoyant turbulent diffusion flames[J]. Combustion and Flame, 2004, 136(1/2): 51-71. |
| [7] | FRAGA G C, CENTENO F R, PETRY A P, et al. Evaluation and optimization-based modification of a model for the mean radiative emission in a turbulent non-reactive flow[J]. International Journal of Heat and Mass Transfer, 2017, 114: 664-674. |
| [8] | FRAGA G C, COELHO P J, PETRY A P, et al. Development and testing of a model for turbulence-radiation interaction effects on the radiative emission[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 245: 106852. |
| [9] | BELLAN J. Large-eddy simulation of supersonic round jets: Effects of Reynolds and Mach numbers[J]. AIAA Journal, 2016, 54(5): 1482-1498. |
| [10] | BOGEY C, BAILLY C, JUVÉ D. Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible large eddy simulation[J]. Theoretical and Computational Fluid Dynamics, 2003, 16(4): 273-297. |
| [11] | BLUNCK D L, HARVAZINSKI M E, MERKLE C L, et al. Influence of turbulent fluctuations on the radiation intensity emitted from exhaust plumes[J]. Journal of Thermophysics and Heat Transfer, 2012, 26(4): 581-589. |
| [12] | POITOU D, AMAYA J, HAFI M EL, et al. Analysis of the interaction between turbulent combustion and thermal radiation using unsteady coupled LES/DOM simulations[J]. Combustion and Flame, 2012, 159(4): 1605-1618. |
| [13] | ROGER M, SILVA C B DA, COELHO P J. Analysis of the turbulence-radiation interactions for large eddy simulations of turbulent flows[J]. International Journal of Heat and Mass Transfer, 2009, 52(9/10): 2243-2254. |
| [14] | ROGER M, COELHO P J, SILVA C B DA. Relevance of the subgrid-scales for large eddy simulations of turbulence-radiation interactions in a turbulent plane jet[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2011, 112(7): 1250-1256. |
| [15] | CHANDY A J, GLAZE D J, FRANKEL S H. A hybrid large eddy simulation/filtered mass density function for the calculation of strongly radiating turbulent flames[J]. Journal of Heat Transfer, 2009, 131(5): 051201. |
| [16] | GUPTA A, HAWORTH D C, MODEST M F. Turbulence-radiation interactions in large-eddy simulations of luminous and nonluminous nonpremixed flames[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1281-1288. |
| [17] | NMIRA F, MA L, CONSALVI J L. Assessment of subfilter-scale turbulence-radiation interaction in non-luminous pool fires[J]. Proceedings of the Combustion Institute, 2021, 38(3): 4927-4934. |
| [18] | NMIRA F, CONSALVI J L. Local contributions of resolved and subgrid turbulence-radiation interaction in LES/presumed FDF modelling of large-scale methanol pool fires[J]. International Journal of Heat and Mass Transfer, 2022, 190: 122746. |
| [19] | POITOU D, CUENOT B, HAFI M EL. Diagnosis of turbulence radiation interaction in turbulent flames and implications for modeling in large eddy simulation[J]. Turkish Journal of Engineering and Environmental Sciences, 2007, 31(6):371-381. |
| [20] | PIERCE C D, MOIN P. A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar[J]. Physics of Fluids, 1998, 10(12): 3041-3044. |
| [21] | FRAGA G C, MIRANDA F C, FRANÇA F H R, et al. Assessment of a model for emission subgrid-scale turbulence-radiation interaction applied to a scaled Sandia flame DD[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2020, 248: 106986. |
| [22] | 刘玉英, 吴辉霞, 薛然然, 等. TRI对湍流火焰模拟中辐射源项的影响[J]. 燃烧科学与技术, 2011, 17(2): 121-125. |
| LIU Y Y, WU H X, XUE R R, et al. Influence of TRI on radiation source term during turbulent flame simulation[J]. Journal of Combustion Science and Technology, 2011, 17(2): 121-125 (in Chinese). | |
| [23] | 徐晓, 陈义良, 刘林华, 等. FVM结合PDF方法研究湍流射流火焰中的辐射换热[J]. 中国科学技术大学学报, 2005, 35(4): 549-556. |
| XU X, CHEN Y L, LIU L H, et al. The combination of FVM and PDF method for radiation heat transfer in turbulent jet diffusion flames[J]. Journal of University of Science and Technology of China, 2005, 35(4): 549-556 (in Chinese). | |
| [24] | 罗蕾, 吉洪湖, 卢浩浩, 等. 湍流脉动对圆射流红外辐射特性的影响研究[J]. 红外与激光工程, 2020, 49(8): 20200030. |
| LUO L, JI H H, LU H H, et al. Influence of turbulent fluctuations on the infrared radiation characteristics of round jet flow[J]. Infrared and Laser Engineering, 2020, 49(8): 20200030 (in Chinese). | |
| [25] | 宋绪光, 金捷, 张敏琦, 等. 基于LES的射流火焰湍流辐射交互作用研究[J]. 北京航空航天大学学报, 2024, 50(8): 2667-2676. |
| SONG X G, JIN J, ZHANG M Q, et al. Turbulence-radiation interaction in turbulent jet flame based on large-eddy simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2024, 50(8): 2667-2676 (in Chinese). | |
| [26] | CUMBER P S. Validation study of a turbulence radiation interaction model: Weak, intermediate and strong TRI in jet flames[J]. International Journal of Heat and Mass Transfer, 2014, 79: 1034-1047. |
| [27] | 吴越, 胡海洋, 王强, 等. 多尺度多线组宽带k分布模型参数优化方法[J]. 航空动力学报, 2024, 39(2): 20220144. |
| WU Y, HU H Y, WANG Q, et al. Parameter optimization of multi-scale multi-group wide-band k-distribution models[J]. Journal of Aerospace Power, 2024, 39(2): 20220144 (in Chinese). | |
| [28] | WANG Q, HAO J X, HU H Y, et al. Optimization of the MSMGWB models used to predict remote infrared signals of jet engine in various spectral intervals[J]. Infrared Physics and Technology, 2024(140): 105403. |
| [29] | PINO MARTÍN M, PIOMELLI U, CANDLER G V. Subgrid-scale models for compressible large-eddy simulations[J]. Theoretical and Computational Fluid Dynamics, 2000, 13(5): 361-376. |
| [30] | MENEVEAU C, LUND T S, CABOT W H. A Lagrangian dynamic subgrid-scale model of turbulence[J]. Journal of Fluid Mechanics, 1996(319): 353-385. |
| [31] | COELHO P J. Approximate solutions of the filtered radiative transfer equation in large eddy simulations of turbulent reactive flows[J]. Combustion and Flame, 2009, 156(5): 1099-1110. |
| [32] | CONSALVI J L, NMIRA F, KONG W J. On the modeling of the filtered radiative transfer equation in large eddy simulations of lab-scale sooting turbulent diffusion flames[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2018, 221: 51-60. |
| [33] | SAMTANEY R, PULLIN D I, KOSOVIĆ B. Direct numerical simulation of decaying compressible turbulence and shocklet statistics[J]. Physics of Fluids, 2001, 13(5): 1415-1430. |
| [34] | BRIDGES J, WERNET M P. The NASA subsonic jet particle image velocimetry (PIV) dataset: NASA/TM-2011-216807[R]. Washington, D.C.: NASA, 2011. |
| [35] | LOCKE R J, WERNET M P, ANDERSON R C. Rotational Raman-based temperature measurements in a high-velocity turbulent jet: NASA/TM-2017-219504[R]. Washington, D.C.: NASA, 2017. |
| [36] | MIELKE A F, ELAM K A, SUNG C J. Multiproperty measurements at high sampling rates using Rayleigh scattering[J]. AIAA Journal, 2009, 47(4): 850-862. |
| [37] | HARTMANN J M, LEVI DI LEON R, TAINE J. Line-by-line and narrow-band statistical model calculations for H2O[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 1984, 32(2): 119-127. |
| [1] | Jianyu XU, Li ZHOU, Zhanxue WANG, Jie SHI, Hao SHI. Calculation method for hypersonic plume infrared radiation based on a fast line-by-line calculation model [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 630778-630778. |
| [2] | Lingling CHEN, Yang ZHANG, Yongqiang SHI, Qingzhen YANG. Film cooling performance/nozzle performance/infrared radiation characteristics of a vector nozzle [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 631139-631139. |
| [3] | Yiqiang SUN, Tanxiao ZHU, Qinglin NIU, Zhihong HE, Shikui DONG. Altitude-scaling law for multi-band radiation signals from liquid-propellant rocket engine exhaust plumes [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 630568-630568. |
| [4] | Jie SHI, Li ZHOU, Jingwei SHI, Zhanxue WANG. Influence of design parameters on infrared radiation characteristics of serpentine nozzles under complex flow conditions [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 530082-530082. |
| [5] | Jie SHI, Li ZHOU, Jingwei SHI, Zhanxue WANG. Rapid prediction model for tail infrared radiation characteristics of serpentine nozzles [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 129639-129639. |
| [6] | WANG Li'nan, CAI Chuhan, LIU Guosheng, MA Bang, MA Xianjie. Electro-optical countermeasure simulation of fighter terminal based on effectiveness evaluation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525834-525834. |
| [7] | YANG Zongyao, ZHANG Jingzhou, SHAN Yong. Effects of slot-inlet arrangement at infrared-suppressor-integrated rear airframe on flow organization and infrared radiation characteristics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 124445-124445. |
| [8] | LI Yanqing, XUAN Yimin. Coupling analysis method for helicopter thermal management and infrared radiation characteristics [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(3): 124270-124270. |
| [9] | JIANG Kunhong, ZHANG Jingzhou, SHAN Yong, ZHENG Zhen, YANG Zongyao. Effects of sheltering and outlet shaping on surface temperature and infrared radiation characteristics of rear airframe with an integrating infrared suppressor [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(2): 123497-123497. |
| [10] | ZHANG Miao, LI Bin, XING Lixiang. Study on frequency characteristics of oxygen feed system based on gas jet and condensation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(2): 123393-123393. |
| [11] | ZHENG Jiansheng, SHAN Yong, ZHANG Jingzhou. Cooling and infrared radiation suppression effect of plug trailing-body of two-dimensional vector plug nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(12): 121384-121384. |
| [12] | GAO Hui, ZHAO Songqing, WU Genshui, CHEN Haiyan, ZHAO Xishuai. Infrared radiation scene generation technology based on resistor array [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(9): 2815-2827. |
| [13] | ZHANG Jingzhou, WANG Xu, SHAN Yong. Effects of plug rear-body film cooling on infrared radiation and aerodynamic performance of axisymmetric plug nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(8): 2601-2608. |
| [14] | CHAI Dong, FANG Yangwang, TONG Zhongxiang, LI Jianxun. Numerical Simulation on Infrared Radiation Characteristics of Scramjet Nozzles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(10): 2300-2307. |
| [15] | ZHANG Shaoli, SHAN Yong, ZHANG Jingzhou, ZHANG Yong. Research on the Aerodynamic and Infrared Radiation Characteristics of Single Expansion Ramp Vector Nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(8): 1406-1416. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

