1 |
KALMAN R E. On the general theory of control[J]. IFAC Proceedings Volumes. 1960, 1(1): 491-502.
|
2 |
CHEN C, DESOER C, NIEDERLINSKI A, et al. Simplified conditions for controllability and observability of linear time-invariant systems[J]. IEEE Transactions on Automatic Control, 1966, 11(3): 613-614.
|
3 |
ZU C X, LI T, RAO B P. Sufficiency of Kalman’s rank condition for the approximate boundary controllability on a spherical domain[J]. Mathematical Methods in the Applied Sciences, 2021, 44(17): 13509-13525.
|
4 |
CHAURASIA A, TRIPATHIS K, SHUKLA A, et al. Complete controllability of nonlinear neural network control systems[J]. Journal of Applied Nonlinear Dynamics, 2024, 13(3): 583-590.
|
5 |
AYDIN M, MAHMUDOV N I. Relative controllability of nonlinear delayed multi-agent systems[J]. International Journal of Control, 2024, 97(2): 348-357.
|
6 |
YANG Z X, WANG X F, WANG L.Controllabilityof networked sampled-data systems[J]. IEEE Transactions on Automatic Control, 2024, 69(8): 5081-5093.
|
7 |
DANHANE B, LOHÉAC J, JUNGERS M. Conditions for uniform ensemble output controllability, and obstruction to uniform ensemble controllability[J]. Mathematical Control and Related Fields, 2024, 14(3): 1128-1175.
|
8 |
TOLSTYKH V K. Controllability of distributed parameter systems[J]. Computational Mathematics and Mathematical Physics, 2024, 64(6): 1211-1223.
|
9 |
SAID A, AHMAD O U, ABBAS W, et al. Network controllability perspectives on graph representation[J]. IEEE Transactions on Knowledge and Data Engineering, 2024, 36(8): 4116-4128.
|
10 |
MALIK M, KUMAR B. Controllability results for singular switched system on time scales[J]. Journal of Control and Decision, 2024, 11(2): 180-189.
|
11 |
史忠科. 高性能飞机发展对控制理论的挑战[J]. 航空学报, 2015, 36(8): 2717-2734.
|
|
SHI Z K. Challenge of control theory in the presence of high performance aircraft development[J]. Acta Aeronauticaet Astronautica Sinica, 2015, 36(8): 2717-2734 (in Chinese).
|
12 |
SHI Z K, WUF X. Robust identification method for nonlinear model structures and its application to high-performance aircraft[J]. International Journal of Systems Science, 2013, 44(6): 1040-1051.
|
13 |
史忠科. 飞行器三维运动故障诊断和容错控制方法: ZL201310095792.0[P]. 2015-04-08.
|
|
SHI Z K. Aircraft fault diagnosis and tolerant control based on three-dimensional motion model:ZL201310095792.0[P]. 2015-04-08 (in Chinese).
|
14 |
SHI Z K, FAN L. Bifurcation analysis of polynomial models for longitudinal motion at high angle of attack[J]. Chinese Journal of Aeronautics, 2013, 26(1): 151-160.
|
15 |
PLUMER J A, FISHER F A, WALKO LC. Lightning effects on the NASA F-8 digital fly-by-wire airplane[R].Washington, D.C.: NASA, 1975.
|
16 |
DEYST J J, DECKERT J C. Application of likelihood ratio methods to failure detection and identification in the NASA F-8 DFBW aircraft[C]∥1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes. Piscataway: IEEE Press, 1975.
|
17 |
DEYST J, DECKERT J, DESAI M, et al.Development and testing of advanced redundancy management mathods for the F-8 DFBW aircraft[C]∥1977 IEEE Conference on Decision and Control including the 16th Symposium on Adaptive Processes and A Special Symposium on Fuzzy Set Theory and Applications. Piscataway: IEEE Press, 1977.
|
18 |
BRYSON A.Guest editorial: Mini-issue in NASA’s advanced control law program for the F-8 DFBW aircraft[J]. IEEE Transactions on Automatic Control, 1977, 22(5): 752.
|
19 |
ELLIOTT J. NASA’s advanced control law program for the F-8 digital fly-by-wire aircraft[J]. IEEE Transactions on Automatic Control, 1977, 22(5): 753-757.
|
20 |
STEIN G, HARTMANN G, HENDRICK R. Adaptive control laws for F-8 flight test[J]. IEEE Transactions on Automatic Control, 1977, 22(5): 758-767.
|
21 |
DUNN H, MONTGOMERY R. A moving window parameter adaptive control system for the F8-DFBW aircraft[J]. IEEE Transactions on Automatic Control, 1977, 22(5): 788-795.
|
22 |
GARRARD W L, JORDAN J M. Design of nonlinear automatic flight control systems[J]. Automatica, 1977, 13(5): 497-505.
|
23 |
DECKERT J, DESAI M, DEYST J, etal. F-8 DFBW sensor failure identification using analytic redundancy[J]. IEEE Transactions on Automatic Control, 1977, 22(5): 795-803.
|
24 |
MARTIN-SANCHEZ J M, Implementation of an adaptive autopilot scheme for the F-8 aircraft using the adaptive-predictive control system [C]∥Asilomar Conference on Circuits, Systems & Computers. Piscataway: IEEE Press, 1980.
|
25 |
BERRY D, POWERS B, SZALAI K, etal. Asummer of an in-flight evaluation of control system pure time delays during landing using the F-8 DFBW airplane:AIAA-1980-1626[R]. Reston: AIAA, 1980.
|
26 |
DECKERT J. Flight test results for the F-8 digital fly-by-wire aircraft control sensor analytic redundancy management technique:AIAA-1981-1796[R]. Reston: AIAA, 1981.
|
27 |
ENNSD F, BUGAJSKID J, KLEPL M J. Flight control for the F-8 oblique wing research aircraft[J]. IEEE Control Systems Magazine, 1988, 8(2): 81-86.
|
28 |
SADHUKHAN D, FETEIH S. F8 neurocontroller based on dynamic inversion[J]. Journal of Guidance, Control, and Dynamics, 1996, 19(1): 150-156.
|
29 |
SURESH S, OMKARSN, MANI V, et al. Direct adaptive neural flight controller for F-8 fighter aircraft[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(2): 454-464.
|
30 |
XIN Q, SHI Z K. Bifurcation analysis and stability design for aircraft longitudinal motion with high angle of attack[J]. Chinese Journal of Aeronautics, 2015, 28(1): 250-259.
|
31 |
MANURUNG A, KRISTIANA L, SYAFITRI N, et al. Revisiting the F-8 aircraft control problem with dynamic programming[C]∥2022 13th Asian Control Conference (ASCC). Piscataway: IEEE Press, 2022.
|
32 |
BISWAS B, IGNATYEV D, ZOLOTAS A, et al. Design of controller with enlarged region of attraction using union theorem in sum-of-squares optimization for the F-8 aircraft:AIAA-2024-1018[R]. Reston: AIAA, 2024.
|
33 |
SHI Z K. Interval criterion of robust stability for nonlinear system and its application to flight control[J]. Chinese Journal of Aeronautics, 2004, 17(2): 99-105.
|