Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (13): 531422.doi: 10.7527/S1000-6893.2024.31422
• Articles • Previous Articles
Yuchun ZOU, Chenggang TAO, Ziyang ZHEN(
), Zhibin YIN, Yikun CHEN
Received:2024-10-21
Revised:2024-11-20
Accepted:2025-02-13
Online:2025-03-07
Published:2025-03-06
Contact:
Ziyang ZHEN
E-mail:zhenziyang@nuaa.edu.cn
Supported by:CLC Number:
Yuchun ZOU, Chenggang TAO, Ziyang ZHEN, Zhibin YIN, Yikun CHEN. Precision landing control based on direct force for flying-wing carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531422.
| [1] | 张伟, 赵轲, 夏露, 等. 飞翼布局翼型系列设计进展[J]. 空气动力学学报, 2021, 39(6): 37-52. |
| ZHANG W, ZHAO K, XIA L, et al. A multi-disciplinary global/local optimization method for flying-wing airfoils design[J]. Acta Aerodynamica Sinica, 2021, 39(6): 37-52 (in Chinese). | |
| [2] | 陈清阳, 辛宏博, 王鹏, 等. 飞翼布局飞行器研究现状分析[J]. 国防科技大学学报, 2024, 46(3): 39-58. |
| CHEN Q Y, XIN H B, WANG P, et al. Analysis of the current research on the flying-wing aircraft[J]. Journal of National University of Defense Technology, 2024, 46(3): 39-58 (in Chinese). | |
| [3] | WHITTENBURY J. Configuration design development of the navy UCAS-D X-47B[C]∥AIAA Centennial of Naval Aviation Forum “100 Years of Achievement and Progress”. Reston: AIAA, 2011. |
| [4] | 甄子洋, 王新华, 江驹, 等. 舰载机自动着舰引导与控制研究进展[J]. 航空学报, 2017, 38(2): 020435. |
| ZHEN Z Y, WANG X H, JIANG J, et al. Research progress in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(2): 020435 (in Chinese). | |
| [5] | 张志冰, 甄子洋, 江驹, 等. 舰载机自动着舰引导与控制综述[J]. 南京航空航天大学学报, 2018, 50(6): 734-744. |
| ZHANG Z B, ZHEN Z Y, JIANG J, et al. Review on development in guidance and control of automatic carrier landing of carrier-based aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2018, 50(6): 734-744 (in Chinese). | |
| [6] | 甄子洋. 舰载无人机自主着舰回收制导与控制研究进展[J]. 自动化学报, 2019, 45(4): 669-681. |
| ZHEN Z Y. Research development in autonomous carrier-landing/ship-recovery guidance and control of unmanned aerial vehicles[J]. Acta Automatica Sinica, 2019, 45(4): 669-681 (in Chinese). | |
| [7] | 杨一栋. 直升机飞行控制[M]. 北京: 国防工业出版社, 2007: 131-148. |
| YANG Y D. Helicopter flight control[M]. Beijing: National Defense Industry Press, 2007: 131-148 (in Chinese). | |
| [8] | YUAN Y, DUAN H B, ZENG Z G. Automatic carrier landing control with external disturbance and input constraint[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(2): 1426-1438. |
| [9] | YU Y, WANG H L, LI N, et al. Automatic carrier landing system based on active disturbance rejection control with a novel parameters optimizer[J]. Aerospace Science and Technology, 2017, 69: 149-160. |
| [10] | DENHAM J W. Project MAGIC CARPET: “Advanced controls and displays for precision carrier landings” [C]∥54th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2016. |
| [11] | 吴文海, 汪节, 高丽, 等. MAGIC CARPET着舰技术分析[J]. 系统工程与电子技术, 2018, 40(9): 2079-2091. |
| WU W H, WANG J, GAO L, et al. Analysis on MAGIC CARPET carrier landing technology[J]. Systems Engineering and Electronics, 2018, 40(9): 2079-2091 (in Chinese). | |
| [12] | 段卓毅, 王伟, 耿建中, 等. 舰载机人工进场着舰精确轨迹控制技术[J]. 航空学报, 2019, 40(4): 622328. |
| DUAN Z Y, WANG W, GENG J Z, et al. Precision trajectory manual control technologies for carrier-based aircraft approaching and landing[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(4): 622328 (in Chinese). | |
| [13] | 张志冰, 张秀林, 王家兴, 等. 一种基于多操纵面控制分配的IDLC人工着舰精确控制方法[J]. 航空学报, 2021, 42(8): 525840. |
| ZHANG Z B, ZHANG X L, WANG J X, et al. An IDLC landing control method of carrier-based aircraft based on control allocation of multiple control surfaces[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525840 (in Chinese). | |
| [14] | 罗飞, 张军红, 王博, 等. 基于直接升力与动态逆的舰尾流抑制方法[J]. 航空学报, 2021, 42(12): 124770. |
| LUO F, ZHANG J H, WANG B, et al. Air wake suppression method based on direct lift and nonlinear dynamic inversion control[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(12): 124770 (in Chinese). | |
| [15] | 罗飞, 张军红. 基于增量动态逆框架的舰载机直接升力航迹控制[J]. 飞行力学, 2021, 39(6): 29-35, 48. |
| LUO F, ZHANG J H. Carrier-based aircraft trajectory control using direct lift based on incremental nonlinear dynamic inversion framework[J]. Flight Dynamics, 2021, 39(6): 29-35, 48 (in Chinese). | |
| [16] | GUAN Z Y, LIU H, ZHENG Z W, et al. Moving path following with integrated direct lift control for carrier landing[J]. Aerospace Science and Technology, 2022, 120: 107247. |
| [17] | 张孝伟. 飞翼舰载无人机着舰控制技术研究[D]. 南京: 南京航空航天大学, 2017: 38-48. |
| ZHANG X W. Research on landing control technology of flying wing carrier-based UAV[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 38-48 (in Chinese). | |
| [18] | 王峰. 多操纵面先进布局舰载无人机飞行控制技术研究[D]. 南京: 南京航空航天大学, 2022: 24-44. |
| WANG F. Research on flight control technology of ship-borne UAV with advanced layout of multi-control surfaces[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2022: 24-44 (in Chinese). | |
| [19] | ADDINGTON G A. Control-surface deflection effects on the innovative control effectors (ICE 101) design[M]. Wright-Patterson Air Force Base: AFRL, 2000. |
| [20] | GILLARD W J. Innovative control effectors (configuration 101) dynamic wind tunnel test report rotary balance and forced oscillation tests: AFRL-VA-WP-TR-1998-3043 [R]. Wright-Patterson Air Force Base: AFRL, 1998. |
| [21] | NIESTROY M A, DORSETT K M, MARKSTEIN K. A tailless fighter aircraft model for control-related research and development[C]∥AIAA Modeling and Simulation Technologies Conference. Reston: AIAA, 2017. |
| [22] | HRISTOV G. Innovative control effectors for maneuvering of air vehicles[J]. Illinois Tech Undergraduate Research Journal, 2015: 6-18. |
| [23] | 马超, 王立新. 飞翼布局作战飞机起降特性分析[J]. 北京航空航天大学学报, 2009, 35(4): 429-433. |
| MA C, WANG L X. Take-off and landing features of flying-wing configuration fighter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(4): 429-433 (in Chinese). | |
| [24] | MATAMOROS I, DE VISSER C C. Incremental nonlinear control allocation for a tailless aircraft with innovative control effectors[C]∥2018 AIAA Guidance, Navigation, and Control Conference. Reston: AIAA, 2018. |
| [25] | ZUO Z Y, HAN Q L, NING B D. Fixed-time cooperative control of multi-agent systems[M]. Cham: Springer International Publishing, 2019: 22. |
| [1] | Xiaochen LYU, Jingping SHI, Yongxi LYU, Gengnong LI. Flow angle reconstruction algorithm for MAGIC CARPET landing with sensor failure [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531159-531159. |
| [2] | Ming YAN, Jiaxing WANG, Heqi LI, Kai LIU. Active disturbance rejection control of carrier-based aircraft based on offline network/online identification [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(13): 531317-531317. |
| [3] | Lu ZHUANG, Zhong LU, Haijing SONG, Li DONG, Yuting WU, Jia ZHOU. Safety analysis for fly⁃by⁃wire system based on fault injection model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(9): 327329-327329. |
| [4] | Fangjian WANG, Ke XIE, Jin LIU, Yuhui SONG, Han QIN, Lan CHEN. Unsteady flow and wing rock characteristics of low aspect ratio flying-wing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126449-126449. |
| [5] | Shuai SHAO, Zheng GUO, Gaowei JIA, Qingyang CHEN, Zhongxi HOU, Laiping ZHANG. Roll control of medium-aspect-ratio flying-wing UCAV based on trailing-edge jet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(10): 127437-127437. |
| [6] | LIU Chang, JIANG Yongping, MA Chunyan, ZHANG Tao. Formal verification technology for AADL models based on NuSMV [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 325196-325196. |
| [7] | ZHANG Jie, LI Wangbin, WANG Zhengqu, PAN Jinzhu, BU Chen. Transonic lateral departure motion characteristics of a low-aspect-ratio flying-wing model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(11): 526340-526340. |
| [8] | FENG Lihao, WEI Lingyun, DONG Lei, WANG Jinjun. Active flow control for coupled motion instability of flying-wing aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527353-527353. |
| [9] | LIU Haigang, LIU Liang, WANG Peng, ZHOU Wei. Model based simulation and analysis of energy optimization characteristics of more-electric aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(8): 525801-525801. |
| [10] | LIU Zhitao, JIANG Yong, NIE Bowen, CEN Fei, XU Sheng. Effect of bendable wing tip on aerodynamic characteristics of flying-wing configuration aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(6): 124179-124179. |
| [11] | LUO Fei, ZHANG Junhong, WANG Bo, TANG Ruilin, TANG Wei. Air wake suppression method based on direct lift and nonlinear dynamic inversion control [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 124770-124770. |
| [12] | YANG Xuan, WEI Xiaoyong, CUI Delong. Bus interface strategy in flight control system for carrier-based aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(4): 622283-622283. |
| [13] | WANG Rong, YAN Ming, BAI Peng, YANG Yunjun, XU Guowu. Optimization design of aerodynamics and stealth for a flying-wing UAV planform [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(S1): 721532-721532. |
| [14] | TANG Wei, SONG Bifeng, CAO Yu, YANG Wenqing. Preliminary design method for miniature electric-powered vertical take-off and landing unmanned airial vehicle and effects of special parameters [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(10): 220972-220972. |
| [15] | SHI Zhongke. Challenge of control theory in the presence of high performance aircraft development [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(8): 2717-2734. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

