Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (6): 531382.doi: 10.7527/S1000-6893.2024.31382
• Material Engineering and Mechanical Manufacturing • Previous Articles
Xiaokui YUE1,2, Mingzhu ZHU1,2(
), Haohua GENG1,2, Lijing GONG1,2, Yongyue WANG1,2
Received:2024-10-11
Revised:2024-11-15
Accepted:2024-12-11
Online:2024-12-31
Published:2024-12-30
Contact:
Mingzhu ZHU
E-mail:zhumingzhu@nwpu.edu.cn
Supported by:CLC Number:
Xiaokui YUE, Mingzhu ZHU, Haohua GENG, Lijing GONG, Yongyue WANG. Origami metamaterials and their applications and prospects in aerospace field[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531382.
| 1 | PERAZA-HERNANDEZ E A, HARTL D J, MALAK J, et al. Origami-inspired active structures: A synthesis and review[J]. Smart Material Structures, 2014, 23(9): 094001. |
| 2 | LEBÉE A. From folds to structures, a review[J]. International Journal of Space Structures, 2015, 30(2): 55-74. |
| 3 | NING X, WANG X J, ZHANG Y, et al. Assembly of advanced materials into 3D functional structures by methods inspired by origami and kirigami: A review[J]. Advanced Materials Interfaces, 2018, 5(13): 1800284. |
| 4 | TURNER N, GOODWINE B, SEN M. A review of origami applications in mechanical engineering[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016, 230(14): 2345-2362. |
| 5 | PARK J J, WON P, KO S H. A review on hierarchical origami and kirigami structure for engineering applications[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2019, 6(1): 147-161. |
| 6 | RUS D, TOLLEY M T. Design, fabrication and control of origami robots[J]. Nature Reviews Materials, 2018, 3: 101-112. |
| 7 | 陈仕魁, 顾险峰. 心脏支架、折纸艺术与超材料设计[J]. 科技导报, 2017, 35(10): 105. |
| CHEN S K, GU X F. Heart stent, origami art and metamaterial design[J]. Science & Technology Review, 2017, 35(10): 105 (in Chinese). | |
| 8 | 李笑, 李明. 折纸及其折痕设计研究综述[J]. 力学学报, 2018, 50(3): 467-476. |
| LI X, LI M. A review of origami and its crease design[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 467-476 (in Chinese). | |
| 9 | 常若菲, 张一慧, 宋吉舟. 可延展结构的设计及力学研究新进展[J]. 固体力学学报, 2016, 37(2): 95-106. |
| CHANG R F, ZHANG Y H, SONG J Z. Recent advances in mechanics of stretchable designs[J]. Chinese Journal of Solid Mechanics, 2016, 37(2): 95-106 (in Chinese). | |
| 10 | 冯慧娟, 杨名远, 姚国强, 等. 折纸机器人[J]. 中国科学(技术科学), 2018, 48(12): 1259-1274. |
| FENG H J, YANG M Y, YAO G Q, et al. Origami robots[J]. Scientia Sinica (Technologica), 2018, 48(12): 1259-1274 (in Chinese). | |
| 11 | ZHANG Q W, FANG H B, XU J. Yoshimura-origami based earthworm-like robot with 3-dimensional locomotion capability[J]. Frontiers in Robotics and AI, 2021, 8: 738214. |
| 12 | SAREH P, CHERMPRAYONG P, EMMANUELLI M, et al. Rotorigami: A rotary origami protective system for robotic rotorcraft[J]. Science Robotics, 2018, 3(22): eaah5228. |
| 13 | BHOVAD P, KAUFMANN J, LI S Y. Peristaltic locomotion without digital controllers: Exploiting multi-stability in origami to coordinate robotic motion[J]. Extreme Mechanics Letters, 2019, 32: 100552. |
| 14 | ZHAKYPOV Z, FALAHI M, SHAH M, et al. The design and control of the multi-modal locomotion origami robot, Tribot[C]∥2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). Piscataway: IEEE Press, 2015: 4349-4355. |
| 15 | ZHAKYPOV Z, PAIK J. Design methodology for constructing multimaterial origami robots and machines[J]. IEEE Transactions on Robotics, 2018, 34(1): 151-165. |
| 16 | KIM S J, LEE D Y, JUNG G P, et al. An origami-inspired, self-locking robotic arm that can be folded flat[J]. Science Robotics, 2018, 3(16): eaar2915. |
| 17 | FANG H B, ZHANG Y T, WANG K W. Origami-based earthworm-like locomotion robots[J]. Bioinspiration & Biomimetics, 2017, 12(6): 065003. |
| 18 | LEE D Y, KIM S R, KIM J S, et al. Origami wheel transformer: A variable-diameter wheel drive robot using an origami structure[J]. Soft Robotics, 2017, 4(2): 163-180. |
| 19 | SCHENK M, KERR S, SMYTH A M, et al. Inflatable cylinders for deployable space structures[C]∥Proceedings of the First Conference Transformables, 2003. |
| 20 | LIU Z Q, QIU H, LI X, et al. Review of large spacecraft deployable membrane antenna structures[J]. Chinese Journal of Mechanical Engineering, 2017, 30(6): 1447-1459. |
| 21 | BERNARDO P, IULIANELLI A, MACEDONIO F, et al. Membrane technologies for space engineering[J]. Journal of Membrane Science, 2021, 626: 119177. |
| 22 | CHANDRA M, KUMAR S, CHATTOPADHYAYA S, et al. A review on developments of deployable membrane-based reflector antennas[J]. Advances in Space Research, 2021, 68(9): 3749-3764. |
| 23 | 王长国, 杜星文, 万志敏. 空间薄膜结构褶皱的数值模拟最新研究进展[J]. 力学进展, 2007, 37(3): 389-397. |
| WANG C G, DU X W, WAN Z M. Advances in the numerical investigations on wrinkles in space membrane structures[J]. Advances in Mechanics, 2007, 37(3): 389-397 (in Chinese). | |
| 24 | 彭福军, 谢超, 张良俊. 面向空间应用的薄膜可展开结构研究进展及技术挑战[J]. 载人航天, 2017, 23(4): 427-439. |
| PENG F J, XIE C, ZHANG L J. Advancement and technical challenges of deployable membrane structure in space application[J]. Manned Spaceflight, 2017, 23(4): 427-439 (in Chinese). | |
| 25 | ZHOU C H, ZHOU Y, WANG B. Crashworthiness design for trapezoid origami crash boxes[J]. Thin-Walled Structures, 2017, 117: 257-267. |
| 26 | KARAGIOZOVA D, ZHANG J J, LU G X, et al. Dynamic in-plane compression of Miura-ori patterned metamaterials[J]. International Journal of Impact Engineering, 2019, 129: 80-100. |
| 27 | HOSSAIN BHUIYAN M E, SEMER D, TREASE B P. Dynamic modeling and analysis of strain energy and centrifugal force deployment of an origami flasher[C]∥ ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: ASME, 2017. |
| 28 | LI Y, YOU Z. Open-section origami beams for energy absorption[J]. International Journal of Mechanical Sciences, 2019, 157: 741-757. |
| 29 | 翟家跃. 折纸型蜂窝缓冲装置吸能特性与软着陆性能分析[D]. 南京: 南京理工大学, 2023. |
| ZHAI J Y. Energy absorption characteristics and soft landing performance of origami honeycomb buffer device[D]. Nanjing: Nanjing University of Science and Technology, 2023 (in Chinese). | |
| 30 | SADEGHI S, LI S Y. Fluidic origami cellular structure with asymmetric quasi-zero stiffness for low-frequency vibration isolation[J]. Smart Materials and Structures, 2019, 28(6): 065006. |
| 31 | YANG K, XU S Q, ZHOU S W, et al. Multi-objective optimization of multi-cell tubes with origami patterns for energy absorption[J]. Thin-Walled Structures, 2018, 123: 100-113. |
| 32 | SONG J, CHEN Y, LU G X. Axial crushing of thin-walled structures with origami patterns[J]. Thin-Walled Structures, 2012, 54: 65-71. |
| 33 | SADEGHI S, LI S Y. Harnessing the quasi-zero stiffness from fluidic origami for low frequency vibration isolation[C]∥ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. New York: ASME, 2017. |
| 34 | INAMOTO K, ISHIDA S. Improved feasible load range and its effect on the frequency response of origami-inspired vibration isolators with quasi-zero-stiffness characteristics[J]. Journal of Vibration and Acoustics, 2019, 141(2): 021004. |
| 35 | 黄澍鑫. 圆锥形折叠结构的能量吸收机理研究[D]. 广州: 广州大学, 2024. |
| HUANG S X. Research on energy absorption mechanism of floded cone dome[D]. Guangzhou: Guangzhou University, 2024 (in Chinese). | |
| 36 | SALAZAR R, MURTHY S, PELLAZAR C, et al. TransFormers for lunar extreme environments: Large origami deployable solar reflectors[C]∥2017 IEEE Aerospace Conference. Piscataway: IEEE Press, 2017: 1-7. |
| 37 | FELTON S, TOLLEY M, DEMAINE E, et al. A method for building self-folding machines[J]. Science, 2014, 345(6197): 644-646. |
| 38 | KAUFMANN J, BHOVAD P, LI S Y. Harnessing the multistability of kresling origami for reconfigurable articulation in soft robotic arms[J]. Soft Robotics, 2022, 9(2): 212-223. |
| 39 | FONSECA L M, SAVI M A. Nonlinear dynamics of an autonomous robot with deformable origami wheels[J]. International Journal of Non-Linear Mechanics, 2020, 125: 103533. |
| 40 | FANG H B, CHU S A, XIA Y T, et al. Programmable self-locking origami mechanical metamaterials[J]. Advanced Materials, 2018, 30(15): 1706311. |
| 41 | SENGUPTA S, LI S Y. Harnessing the anisotropic multistability of stacked-origami mechanical metamaterials for effective modulus programming[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(14): 2933-2945. |
| 42 | DUDTE L H, VOUGA E, TACHI T, et al. Programming curvature using origami tessellations[J]. Nature Materials, 2016, 15(5): 583-588. |
| 43 | YUAN T T, LIU Z Y, ZHOU Y H, et al. Dynamic modeling for foldable origami space membrane structure with contact-impact during deployment[J]. Multibody System Dynamics, 2020, 50(1): 1-24. |
| 44 | WEBB D, HIRSCH B, BACH V, et al. Starshade mechanical architecture & technology effort[C]∥3rd AIAA Spacecraft Structures Conference. Reston: AIAA, 2016. |
| 45 | YOU Z, COLE N. Self-locking bi-stable deployable booms[C]∥47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2006. |
| 46 | LIU C, FELTON S M. Transformation dynamics in origami[J]. Physical Review Letters, 2018, 121(25): 254101. |
| 47 | 张子安, 刘作林, 徐鉴, 等. 折纸弹簧结构多模式变形实验与分析[J]. 固体力学学报, 2023, 44(4): 497-511. |
| ZHANG Z A, LIU Z L, XU J, et al. Experiments and analysis on the multi-mode deformations of the origami spring structure[J]. Chinese Journal of Solid Mechanics, 2023, 44(4): 497-511 (in Chinese). | |
| 48 | XIA Y T, KIDAMBI N, AGARWAL V, et al. The influence of geometry on origami’s deployment dynamics[C]∥Proceedings of the Active and Passive Smart Structures and Integrated Systems XIV. New York: SPIE, 2020. |
| 49 | HAN H S, SOROKIN V, TANG L H, et al. A nonlinear vibration isolator with quasi-zero-stiffness inspired by Miura-origami tube[J]. Nonlinear Dynamics, 2021, 105(2): 1313-1325. |
| 50 | LIU T, WANG Y Z, LEE K. Three-dimensional printable origami twisted tower: Design, fabrication, and robot embodiment[J]. IEEE Robotics and Automation Letters, 2017, 3(1): 116-123. |
| 51 | 邱海, 方虹斌, 徐鉴. 多稳态串联折纸结构的非线性动力学特性[J]. 力学学报, 2019, 51(4): 1110-1121. |
| QIU H, FANG H B, XU J. Nonlinear dynamical characteristics of a multi-stable series origami structure[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1110-1121 (in Chinese). | |
| 52 | 方虹斌, 吴海平, 刘作林, 等. 折纸结构和折纸超材料动力学研究进展[J]. 力学学报, 2022, 54(1): 1-38. |
| FANG H B, WU H P, LIU Z L, et al. Advances in the dynamics of origami structures and origami metamaterials[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 1-38 (in Chinese). | |
| 53 | 陈耀, 叶王杰, 史佳遥, 等. 三浦折纸超材料结构数字化设计与模型验证[J]. 力学学报, 2022, 54(7): 2019-2029. |
| CHEN Y, YE W J, SHI J Y, et al. Digital design and model verification of miura origami metamaterial structures[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(7): 2019-2029 (in Chinese). | |
| 54 | YE H T, LIU Q J, CHENG J X, et al. Multimaterial 3D printed self-locking thick-panel origami metamaterials[J]. Nature Communications, 2023, 14(1): 1607. |
| 55 | MA J Y, CHAI S B, CHEN Y. Geometric design, deformation mode, and energy absorption of patterned thin-walled structures[J]. Mechanics of Materials, 2022, 168: 104269. |
| 56 | SCHENK M, GUEST S D. Geometry of miura-folded metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(9): 3276-3281. |
| 57 | FILIPOV E T, TACHI T, PAULINO G H. Origami tubes assembled into stiff, yet reconfigurable structures and metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(40): 12321-12326. |
| 58 | WANG X L, QU H B, HU B Q, et al. Energy absorption of Kresling pattern thin-walled structures with pre-folded patterns and graded stiffness[J]. International Journal of Solids and Structures, 2024, 305: 113057. |
| 59 | YU H Y, GUO Z, WANG J R. A method of calculating the degree of freedom of foldable plate rigid origami with adjacency matrix[J]. Advances in Mechanical Engineering, 2018, 10(6): 1687814018779696. |
| 60 | MIYASHITA S, MEEKER L, TOLLEY M T, et al. Self-folding miniature elastic electric devices[J]. Smart Material Structures, 2014, 23(9): 094005. |
| 61 | SONG Z C, ZHU J F, WANG X C, et al. Origami metamaterials for ultra-wideband and large-depth reflection modulation[J]. Nature Communications, 2024, 15(1): 3181. |
| 62 | OVERVELDE J T B, DE JONG T A, SHEVCHENKO Y, et al. A three-dimensional actuated origami-inspired transformable metamaterial with multiple degrees of freedom[J]. Nature Communications, 2016, 7: 10929. |
| 63 | ZHAO Z A, KUANG X, WU J T, et al. 3D printing of complex origami assemblages for reconfigurable structures[J]. Soft Matter, 2018, 14(39): 8051-8059. |
| 64 | JI J C, LUO Q T, YE K. Vibration control based metamaterials and origami structures: A state-of-the-art review[J]. Mechanical Systems and Signal Processing, 2021, 161: 107945. |
| 65 | CHEUNG K C, TACHI T, CALISCH S, et al. Origami interleaved tube cellular materials[J]. Smart Material Structures, 2014, 23(9): 094012. |
| 66 | TAO R, JI L T, LI Y, et al. 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves[J]. Composites Part B: Engineering, 2020, 201: 108344. |
| 67 | XIANG X M, QIANG W, HOU B, et al. Quasi-static and dynamic mechanical properties of Miura-ori metamaterials[J]. Thin-Walled Structures, 2020, 157: 106993. |
| 68 | TOWNSEND S, ADAMS R, ROBINSON M, et al. 3D printed origami honeycombs with tailored out-of-plane energy absorption behavior[J]. Materials & Design, 2020, 195: 108930. |
| 69 | HUANG K L, MA J Y, ZHOU X, et al. Quasi-static mechanical properties of origami-inspired cellular metamaterials made by metallic 3D printing[J]. Mechanics of Advanced Materials and Structures, 2023, 30(21): 4459-4472. |
| 70 | 谢瑞康. 渐变折纸结构[D]. 天津: 天津大学, 2016. |
| XIE R K. The graded origami structures[D]. Tianjin: Tianjin University, 2016 (in Chinese). | |
| 71 | CHEN Z H, LI Y, LI Q M. Hydrogel-driven origami metamaterials for tunable swelling behavior[J]. Materials & Design, 2021, 207: 109819. |
| 72 | LIU Q J, YE H T, CHENG J X, et al. Stiffness-tunable origami structures via multimaterial three-dimensional printing[J]. Acta Mechanica Solida Sinica, 2023, 36(4): 582-593. |
| 73 | ZHAO W, LI N, LIU L W, et al. Origami derived self-assembly stents fabricated via 4D printing[J]. Composite Structures, 2022, 293: 115669. |
| 74 | GAO J Y, YOU Z. Origami-inspired Miura-ori honeycombs with a self-locking property[J]. Thin-Walled Structures, 2022, 171: 108806. |
| 75 | ZARE S, SPAETH A, SURESH S, et al. Three-dimensionally printed self-lock origami: Design, fabrication, and simulation to improve performance of rotational joint[J]. Micromachines, 2023, 14(8): 1649. |
| 76 | ZHANG Y J, WANG L C, SONG W L, et al. Hexagon-twist frequency reconfigurable antennas via multi-material printed thermo-responsive origami structures[J]. Frontiers in Materials, 2020, 7: 417. |
| 77 | WICKELER A L, NAGUIB H E. 3D printed multi-material polylactic acid (PLA) origami-inspired structures for quasi-static and impact applications[J]. Smart Material Structures, 2022, 31(11): 115018. |
| 78 | XUE W B, SUN Z C, YE H T, et al. Rigid-flexible coupled origami robots via multimaterial 3D printing[J]. Smart Material Structures, 2024, 33(3): 035004. |
| 79 | LI S Y, WANG K W. Fluidic origami: A plant-inspired adaptive structure with shape morphing and stiffness tuning[J]. Smart Material Structures, 2015, 24(10): 105031. |
| 80 | BOATTI E, VASIOS N, BERTOLDI K. Origami metamaterials for tunable thermal expansion[J]. Advanced Materials, 2017, 29(26): 1700360. |
| 81 | 孙暄, 胡斌, 熊智慧, 等. 航空航天领域用增材制造金属材料的研究进展[J]. 上海金属, 2024, 46(3): 1-12. |
| SUN X, HU B, XIONG Z H, et al. Progress in research on additive manufactured metallic materials reserved for aerospace field[J]. Shanghai Metals, 2024, 46(3): 1-12 (in Chinese). | |
| 82 | 李涤尘, 鲁中良, 田小永, 等. 增材制造: 面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 525387. |
| LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing: Revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 525387 (in Chinese). | |
| 83 | GAO Z Y, WANG H Z, SUN H, et al. Additively manufactured high-energy-absorption metamaterials with artificially engineered distribution of bio-inspired hierarchical microstructures[J]. Composites Part B: Engineering, 2022, 247: 110345. |
| 84 | JIANG P, ZHANG S S, YANG H, et al. Suture interface inspired self-recovery architected structures for reusable energy absorption[J]. ACS Applied Materials & Interfaces, 2023, 15(36): 43102-43110. |
| 85 | LIU X B, ZHANG K, SHI H Z, et al. Origami-inspired metamaterial with compression-twist coupling effect for low-frequency vibration isolation[J]. Mechanical Systems and Signal Processing, 2024, 208: 111076. |
| 86 | YASUDA H, YEIN T, TACHI T, et al. Folding behaviour of Tachi-Miura polyhedron bellows[J]. Proceedings of Mathematical, Physical, and Engineering Sciences, 2013, 469(2159): 20130351. |
| 87 | FILIPOV E T, PAULINO G H, TACHI T. Origami tubes with reconfigurable polygonal cross-sections[J]. Proceedings Mathematical, Physical, and Engineering Sciences, 2016, 472(2185): 20150607. |
| 88 | CHEN Y, LV W L, LI J L, et al. An extended family of rigidly foldable origami tubes[J]. Journal of Mechanisms and Robotics, 2017, 9(2): 021002. |
| 89 | 连威. 基于Kresling折纸结构的可重构连续体机械臂的设计与性能分析[D]. 赣州: 江西理工大学, 2023. |
| LIAN W. Design and performance analysis of reconfigurable continuous manipulator based on kresling origami structure[D]. Ganzhou: Jiangxi University of Science and Technology, 2023 (in Chinese). | |
| 90 | LIU Z L, FANG H B, XU J, et al. Digitized design and mechanical property reprogrammability of multistable origami metamaterials[J]. Journal of the Mechanics and Physics of Solids, 2023, 173: 105237. |
| 91 | KAMRAVA S, GHOSH R, WANG Z H, et al. Origami-inspired cellular metamaterial with anisotropic multi-stability[J]. Advanced Engineering Materials, 2019, 21(2): 1800895. |
| 92 | ZHU Z B, WANG H, LI Y F, et al. Origami-based metamaterials for dynamic control of wide-angle absorption in a reconfigurable manner[J]. IEEE Transactions on Antennas and Propagation, 2022, 70(6): 4558-4568. |
| 93 | WANG L C, SONG W L, ZHANG Y J, et al. Active reconfigurable tristable square-twist origami[J]. Advanced Functional Materials, 2020, 30(13): 1909087. |
| 94 | WANG C L, GUO H W, LIU R Q, et al. Reconfigurable origami-inspired multistable metamorphous structures[J]. Science Advances, 2024, 10(22): eadk8662. |
| 95 | LIU Z L, FANG H B, XU J, et al. A novel origami mechanical metamaterial based on Miura-variant designs: Exceptional multistability and shape reconfigurability[J]. Smart Material Structures, 2021, 30(8): 085029. |
| 96 | ZHANG L, PAN F, MA Y, et al. Bistable reconfigurable origami metamaterials with high load-bearing and low state-switching forces[J]. Extreme Mechanics Letters, 2023, 63: 102064. |
| 97 | SURJADI J U, GAO L B, DU H F, et al. Mechanical metamaterials and their engineering applications[J]. Advanced Engineering Materials, 2019, 21(3): 1800864. |
| 98 | JIAO P C, MUELLER J, RANEY J R, et al. Mechanical metamaterials and beyond[J]. Nature Communications, 2023, 14(1): 6004. |
| 99 | LI L Z, YAO H Y, MI S L. Magnetically driven modular mechanical metamaterials with high programmability, reconfigurability, and multiple applications[J]. ACS Applied Materials & Interfaces, 2023, 15(2): 3486-3496. |
| 100 | YAMAGUCHI K, YASUDA H, TSUJIKAWA K, et al. Graph-theoretic estimation of reconfigurability in origami-based metamaterials[J]. Materials & Design, 2022, 213: 110343. |
| 101 | 屠园园, 王大轶, 张香燕, 等. 航天器的可重构性与自主重构方法[J]. 航空学报, 2023, 44(23): 628855. |
| TU Y Y, WANG D Y, ZHANG X Y, et al. Reconfigurability and autonomous reconfiguration methods of spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628855 (in Chinese). | |
| 102 | ZHAI Z R, WANG Y, JIANG H Q. Origami-inspired, on-demand deployable and collapsible mechanical metamaterials with tunable stiffness[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(9): 2032-2037. |
| 103 | 田大可, 杨希华, 金路, 等. 面向空间折展机构的刚性折纸研究现状与展望[J]. 南京航空航天大学学报, 2023, 55(3): 379-400. |
| TIAN D K, YANG X H, JIN L, et al. Research status and prospect of rigid origami for space deployable and foldable mechanism[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2023, 55(3): 379-400 (in Chinese). | |
| 104 | NANDA A, KARAMI M A. Tunable bandgaps in a deployable metamaterial[J]. Journal of Sound and Vibration, 2018, 424: 120-136. |
| 105 | PEHRSON N A, AMES D C, SMITH S P, et al. Self-deployable, self-stiffening, and retractable origami-based arrays for spacecraft[J]. AIAA Journal, 2020, 58(7): 3221-3228. |
| 106 | WANG S, WU J S, YAN P, et al. Design of deployable circular structures based on Miura origami pattern[J]. Mechanism and Machine Theory, 2023, 186: 105350. |
| 107 | YNCHAUSTI C, ROUBICEK C, ERICKSON J, et al. Hexagonal twist origami pattern for deployable space arrays[J]. ASME Open Journal of Engineering, 2022, 1: 011041. |
| 108 | DELEO A A, O’NEIL J, YASUDA H, et al. Origami-based deployable structures made of carbon fiber reinforced polymer composites[J]. Composites Science and Technology, 2020, 191: 108060. |
| 109 | XIAO L P, XU Z, WANG K, et al. Modular design of space expandable capsule based on origami-inspired structures and stretchable mechanism[C]∥ASME 2021 International Mechanical Engineering Congress and Exposition. New York: ASME, 2022. |
| 110 | WANG C L, GUO H W, LIU R Q, et al. A programmable origami-inspired space deployable structure with curved surfaces[J]. Engineering Structures, 2022, 256: 113934. |
| 111 | LEE M A. Tunable bistability of origami-based mechanical metamaterials[C]∥55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017. |
| 112 | ZHANG X Z, GAO C J, CHEN W J, et al. Design of thick-panel origami-inspired deployable protective shields for spacecraft[J]. Thin-Walled Structures, 2024, 202: 112069. |
| 113 | FAN Z P, WANG R G, HUANG H B, et al. Design and analysis of an origami-inspired modular thick-panel deployable structure[J]. International Journal of Mechanical Sciences, 2024, 282: 109579. |
| 114 | 徐鑫. 基于厚板折纸的空间可展机构几何设计与运动分析[D]. 天津: 天津工业大学, 2023. |
| XU X. Geometric design and kinematic analysis of spatial deployable mechanisms based on thick-panel origami[D]. Tianjin: Tianjin Polytechnic University, 2023 (in Chinese). | |
| 115 | 贾怀博. 基于Flasher折纸的平面可展结构设计研究[D]. 太原: 太原科技大学, 2024. |
| JIA H B. Design of planar deployable structures based on flasher[D]. Taiyuan: Taiyuan University of Science and Technology, 2024 (in Chinese). | |
| 116 | PENG R, CHIRIKJIAN G S. A methodology for thick-panel origami pattern design[J]. Mechanism and Machine Theory, 2023, 189: 105423. |
| 117 | ZHANG X Z, CHEN W J. Programmable thick-panel Miura-ori for ultra-large planar antennas with one-degree-of-freedom[J]. Aerospace Science and Technology, 2024, 151: 109311. |
| 118 | DING S Y, SUN M, LI Y, et al. Novel deployable panel structure integrated with thick origami and morphing bistable composite structures[J]. Materials, 2022, 15(5): 1942. |
| 119 | PENG R, CHIRIKJIAN G S. Morphable thick-panel origami[J]. Mechanism and Machine Theory, 2024, 192: 105528. |
| 120 | ZHANG X Z, CHEN W J. Folding a flat rectangular plate of uniform-thickness panels using Miura-ori[J]. International Journal of Mechanical Sciences, 2023, 257: 108570. |
| 121 | SUN H Z, ZHAO C, WANG K, et al. Shape editing of kirigami-inspired thick-panel deployable structure[J]. Mechanism and Machine Theory, 2024, 191: 105471. |
| 122 | WANG C, ZHANG D W, LI J L, et al. Kirigami-inspired thick-panel deployable structures[J]. International Journal of Solids and Structures, 2022, 251: 111752. |
| 123 | ZHAI Z R, WU L L, JIANG H Q. Mechanical metamaterials based on origami and kirigami[J]. Applied Physics Reviews, 2021, 8(4): 041319. |
| 124 | LIU J, OU H F, ZENG R, et al. Fabrication, dynamic properties and multi-objective optimization of a metal origami tube with Miura sheets[J]. Thin-Walled Structures, 2019, 144: 106352. |
| 125 | SILVERBERG J L, NA J H, EVANS A A, et al. Origami structures with a critical transition to bistability arising from hidden degrees of freedom[J]. Nature Materials, 2015, 14(4): 389-393. |
| 126 | ZHAO S Y, ZHANG Y Y, ZHANG Y H, et al. Graphene origami-enabled auxetic metallic metamaterials: An atomistic insight[J]. International Journal of Mechanical Sciences, 2021, 212: 106814. |
| 127 | SOLANKI A, RANGANATH M S, SINGHOLI A K S. Review on advancements in 3D/4D printing for enhancing efficiency, cost-effectiveness, and quality[J]. International Journal on Interactive Design and Manufacturing (IJIDeM), 2024. . |
| 128 | CHEN Z C, LIN Y T, SALEHI H, et al. Advanced fabrication of mechanical metamaterials based on micro/nanoscale technology[J]. Advanced Engineering Materials, 2023, 25(22): 2300750. |
| 129 | RAYALA S R K. Designing and modelling multi-stable origami structures for adaptive applications[R]. Phoenix: Arizona State University, 2024. |
| [1] | Ting LIU, Qi LIN, Zhen LIU, Xiaoguang WANG, Huisong WU, Yonggang XU. Reconfigurable wire⁃driven parallel support mechanism for electromagnetic scattering test [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 328658-328658. |
| [2] | FENG Zhenyu, CHI Qilin, CUI Huaitian, XIE Jiang, MU Haolei. Comparison of ballistic impact behaviors between plain woven and 2.5D woven fabric composite plates [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(5): 425116-425116. |
| [3] | FENG Zhenyu, CHENG Kun, ZHAO Yifan, LI Henghui, XIE Jiang, MOU Haolei, WANG Yafeng, Ge Yujing. Energy-absorbing characteristics of a typical sub-cargo fuselage section of a transport category aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 222907-222907. |
| [4] | WANG Bo, YE Dong, SUN Zhaowei, TANG Shengyong, CHEN Xin. Hierarchical planning for on-orbit self-reconfiguration of modular reconfigurable satellites [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(9): 322912-322912. |
| [5] | PAN Guowei, CHEN Wenliang, WANG Min. A review of parallel kinematic mechanism technology for aircraft assembly [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522572-522572. |
| [6] | CHEN Wei, XU Haojun, WANG Xiaolong, PEI Binbin, LI Zhe. Reconfigurable control methods of icing aircraft longitudinal motion based on robust servo LQR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(1): 120129-120129. |
| [7] | WU Yaping, ZHAO Jianjun, WU Guangmin, GAO Xiafang, TANG Haifeng. Hardware epoch superposition of X-ray pulsar-based navigation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(2): 662-668. |
| [8] | SHEN Haiou, WANG Buhong. Extended unitary matrix pencil algorithm for optimal design of sparse reconfigurable antenna arrays [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(12): 3811-3820. |
| [9] | ZHANG Zhai, WANG Youren. Cell granularity optimization method of embryonics hardware in application design process [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2016, 37(11): 3502-3511. |
| [10] | LU Wei, MA Xiaoping, ZHOU Ming, SUN Linfeng. Simulation analysis of dynamic characteristic of UAV rope-hook recovery system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(10): 3295-3304. |
| [11] | ZHANG Zhai, WANG Youren. Method to Reliability Improvement of Chip Self-healing Hardware by Array Layout Reformation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(12): 3392-3402. |
| [12] | WEN Liwei, YU Yongbo, QI Junwei, XIAO Jun, YAN Biao. Study on Infrared Heating System Based on Automatic Tape Laying [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2011, 32(10): 1937-1944. |
| [13] | Sun Zhaowei;Liu Yuan;Xu Guodong;Sun Rui. Design of Finite-state-machine for Space Application Based on FPGA Inner RAM [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(5): 989-995. |
| [14] | Sun Zhaowei;Liu Yuan;Xu Guodong;Ye Dong. Reconfigurable Multi-processor On-board Computer for Small Satellites and Small Launch Vehicles [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(4): 770-777. |
| [15] | Xiong Jingqi;Fan Shouwen. Strategy of Fault Tolerance and Fault Rectification for Radar Antenna Platforms and Its FPGA Implementation [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2010, 31(11): 2245-2252. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

