Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (6): 531309.doi: 10.7527/S1000-6893.2024.31309
• Material Engineering and Mechanical Manufacturing • Previous Articles
Wenfeng DING, Nian WAN, Biao ZHAO(
), Yucan FU, Jiuhua XU
Received:2024-09-29
Revised:2024-10-23
Accepted:2024-11-07
Online:2024-11-19
Published:2024-11-18
Contact:
Biao ZHAO
E-mail:zhaobiao@nuaa.edu.cn
Supported by:CLC Number:
Wenfeng DING, Nian WAN, Biao ZHAO, Yucan FU, Jiuhua XU. Research status and tendency of advanced manufacturing theory and technology in aerospace[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(6): 531309.
Table 1
Classification of advanced manufacturing processes in aerospace
| 工艺类型 | 成形精度 | 材料适用范围 |
|---|---|---|
| 高速/超高速加工技术 | 加工尺寸精度通常可达到10 µm级别 表面粗糙度可达到30 nm级别 | 铝、镍、钛合金;纤维增强塑料;钢;铸铁;铜;高性能陶瓷、陶瓷增强金属基复合材料、纤维增强复合材料;淬硬钢等 |
| 精密成形制造技术 | 加工尺寸精度可达10 nm级别 表面粗糙度可达到1 nm级别 | 硬脆性材料:陶瓷及复合材料等;碳化硅、氧化镓等;塑料:丙烯酸、聚碳酸酯、ABS、PEEK等;碳纤维、玻璃纤维等 |
| 微细与纳米加工技术 | 加工尺寸精度可达10 nm级别 表面粗糙度可达1 nm级别 | 单晶硅、硅及锗等;光敏物质、多晶硅膜、金属膜等;纳米金属材料、陶瓷材料及复合材料等;燃料电池材料等;导电材料等 |
| 原子及近原子尺度加工技术 | 原子级针尖的埃米级(0.1 nm)控制 | 超导材料、半导体材料等;特种玻璃、晶体材料等;超材料;石墨烯和二硫化钼等;硅、砷化镓等;金属和介电晶体等 |
| 现代特种加工技术 | 加工尺寸精度可达0.01 mm级别 表面粗糙度可达0.3~0.1 µm级别 | 硬质合金和淬火钢等;高脆性材料;热敏材料;耐腐蚀材料;高强钢、复合材料等;工程陶瓷、金刚石、红宝石、硬化玻璃等 |
| 快速原型制造技术 | FDM:加工尺寸精度可达0.1~0.3 mm级别 SLA:加工尺寸精度可达0.05 mm级别 3D打印:加工尺寸精度可达0.1 mm级别 | 塑料材料;尼龙材料;金属材料;陶瓷材料;复合材料:碳纤维增强塑料和玻璃纤维增强塑料;光敏树脂;橡胶材料;其他特殊材料:环氧树脂、不饱和聚酯、酚醛树脂等热固性树脂等 |
Table 2
Advantages of high-speed/ultra-high speed machining
| 指标 | 优点 |
|---|---|
| 加工速度 | 高速/超高速加工的切削速度比传统加工高5~10倍以上,使得单位时间内的材料切除率大幅增加,从而缩短了加工时间,提高了生产效率 |
| 加工质量与精度 | 高速加工时刀具的激励频率远离系统的固有频率,减少工艺系统的受迫振动,保证较好的加工状态。较小的切削深度和宽度保证了刀具和工件的小变形,实现了高精度、低粗糙度的加工 |
| 刀具耐用度与切削力 | 高速/超高速加工至少可降低30%的切削力。较小的切削深度和进给量保证了较小的切削力,减少了对机床和工件的负担。有利于加工刚性较差的零件,减少加工变形 |
| 热变形 | 高速/超高速加工过程中,由于切削速度的提高,切削区域的温度升高,但切屑的快速移除有助于热量的分散,从而减少热变形 |
| 加工范围与应用领域 | 高速/超高速加工技术广泛应用于航空航天领域细长、复杂曲面、薄壁零件以及难加工材料 |
| 简化工序 | 高速/超高速加工可以直接加工淬火后的硬材料,省去了放电加工等后续工序,减少了加工步骤。同时,减少了机床台数和装夹次数,避免了多次装夹带来的精度误差 |
| 资源消耗与环保性 | 高速/超高速加工技术通过减少工序、提高材料利用率等方式,减少了冷却液的使用,降低了资源消耗和废物产生 |
Table 3
Typical precision plastic forming technologies[11,38]
| 工艺类型 | 成形机理 | 研究方向 | 应用范围 | 成形优点 |
|---|---|---|---|---|
| 颗粒填料辅助推弯成形 | 颗粒填料填充于管材,对管材进行塑性成形 | 推动颗粒填料和管材进入模具,实现薄壁管材的弯曲变形 | 超薄壁小弯曲半径弯管、超薄壁导管弯头 | 抑制管坯起皱、减小横截面畸变 |
| 楔横轧短流程制坯 | 发生径向压缩、轴向延伸的局部变形 | 辊式、单辊弧形式和板式 | 叶片类零件 | 低成本;高成形极限、材料利用率、产品性能、成形精度;高模具寿命;成形件流线分布良好 |
| 冲击液压成形 | 冲击波传载到液-固界面后,使板或管型坯料发生塑性变形 | 固-液-力多场耦合模型;输出精确控制、动态减阻技术 | 铝合金、钛合金等难变形材料 | |
| 等温锻造 | 模具坯料温度相同,锻件在恒定温度下慢速成形 | 坯料设计、工艺参数设计与模具结构设计 | 筋板、盘饼、叶片、枝杈等形状复杂的零件 | |
| 局部加载 | 仅在工件某个部位施加载荷,不断变换加载的部位来完成成形过程 | 简单冲头式、垫板式和分模式 | 尺寸大、薄壁高筋结构的形状特殊的零件 | |
| 多向模锻 | 多个方向对坯料施加载荷,成形带多向内空腔或凹凸外形的复杂形状锻件 | 坯料的多方向载荷施加,实现复杂形状锻件的成形 | 飞机起落架、球形接头、导弹喷管等零件 |
Table 4
Types and characteristics of micro cutting processes[87]
| 工艺类别 | 特点 | 应用范围 |
|---|---|---|
| 微细铣削 | 微细切削领域切削厚度的临界值小于几十微米 微小特征尺寸1~1 000 μm,表面粗糙度Ra最低可小于100 nm 刀具的尺寸和几何形状决定了可加工微小特征的尺寸与精度 负前角切削现象、最小切削厚度效应、切削比能的尺寸效应等特点影响切屑与加工表面的形成 加工金属材料、陶瓷材料和复合材料等,加工材料范围广 | 球头微铣刀的晶体微缺陷修复,晶体的立铣刀铣削,太赫兹器件沟槽的微细铣削等 |
| 微细钻削 | 发动机叶片、硅片、工业陶瓷的微孔加工,PCB复合材料的钻微孔等 | |
| 微细磨削 | 半球谐振陀螺振子、半导体硅片的微细磨削,整流罩的二次微细磨削 |
Table 5
Atomic and near atomic scale technology
| 工艺类别 | 特点 |
|---|---|
| 原子尺度切削 | 原子尺度切削是切削加工技术从宏观尺度发展到微米再到纳米尺度的下一阶段,其目的在于对材料去除量进行原子量级的精确控制,可用于实现原子级表面、原子尺度结构和器件加工 |
| 原子级抛光 | 抛光是获得原子级表面的关键技术,目前已经能够实现原子量级的表面粗糙度,而如何进一步做到原子层可控去除是抛光在原子级制造中面临的重大问题 |
| 电化学加工 | 使用探针作为工具电极,将阳极溶解区域限制在纳米尺度范围,显著减小阳极溶解区域大小、提高电解加工精度,近年来在单晶硅、石墨等材料的纳米尺度加工方面取得重要进展 |
| 等离子体原子级加工技术 | 利用了等离子体的化学反应活性,改性降低表面硬度,结合软磨粒抛光去除改性层获得超光滑表面 |
| 原子精准操控 | 通过精准且高效地操控原子并按需形成新物质/材料、功能结构及器件 |
Table 6
Basic principles, processing characteristics, and application fields of special processing technology
| 技术类型 | 基本原理 | 加工特征 | 加工方式 | 应用领域 |
|---|---|---|---|---|
| 激光加工 | 激光束与物质相互作用,使材料熔化气化 | 高精度、高效率、应用范围广、无污染 成本高、厚度限制 | 焊接、切割、表面处理、打孔、微加工 | 金属、塑料、玻璃材料等 |
| 电火花加工 | 工具电极与工件电极间的脉冲放电的电蚀作用 | 作用力小、自动化程度高、热影响小 材料限制、效率低、表面变质、污染重 | 成形、切割、表面强化、同步共轭回转加工 | 金属、塑料、陶瓷等高熔点材料 |
| 电化学加工 | 利用金属在电解液中产生阳极溶解 | 范围广、效率高、损耗低、无切削力 精度偏低、设备复杂、环境污染 | 电解、电磨削、电化学抛光、电镀和电刻蚀 | 不锈钢、硬质合金、高温耐热合金等 |
| 超声波加工 | 通过悬浮液中磨料对工件表面进行撞击和抛磨 | 高精度质量、磨损小、操作方便 效率低、厚度限制 | 穿孔、切割、焊接、套料和抛光加工 | 各种脆硬、硬质金属等材料 |
| 水射流加工 | 利用高速射流的动能对工件进行加工 | 无热损伤与机械应力、高精度、高效率 成本高、能耗大、加工效率低、技术复杂 | 切割、清洗、打磨加工 | 金属、石材、玻璃、塑料等材料 |
| 电子束/离子束加工 | 利用带电粒子对工件材料的冲击作用 | 非接触加工、范围广、高精度、污染少 成本高、环境苛刻 | 刻蚀、切割、焊接、热处理;镀膜、注入 | 硅片、金属、陶瓷等硬质材料 |
Table 7
Development history of ultrasonic processing mode[116]
| 加工模式 | 加工原理 | 加工特征 |
|---|---|---|
| 一维超声振动切削 | 刀尖振动的方向平行于切削速度方向
| 临界切削速度: 水平速度比HSR(horizontal speed ratio):HSR= |
| 二维椭圆振动切削 | 振动方向包含平行于切削速度和切削深度方向的两个分量
| HSR<1:为断续切削过程,刀具与工件周期性地分离 HSR≥1:为连续切削过程,刀具与工件不再分离 超声振动加工效果随着HSR的增大逐渐减弱,当HSR>1之后效果消失 |
| 超声振动高速切削 | 突破了传统超声振动的临界切削速度
| 分离临界条件: |
Table 8
Application and advantages of special processing technology
| 特种加工的具体应用 | 加工效率的提升 | 加工质量的提升 |
|---|---|---|
| 机翼的襟翼、机翼紧固件的激光切割加工 | 高功率激光器的普及,使得激光切割设备不断突破厚度极限,同时提升了切割效率。对于50 mm合金钢板的切割,3×104 W瓦激光切割机效率提高了88% | 新型激光切割技术实现了横向精度达到10 nm,深宽比超过15 000 nm深加工。超快激光可实现微米级加工精度,表面粗糙度Ra为0.4 μm |
| 发动机涡轮盘、喷嘴、液压元件的电火花加工 | 电火花加工的材料去除率通常约为2~30 mm³/min,随着技术创新和工艺优化,这一速率得到不断地提升 | 电火花加工的精度可高达±0.005 mm |
| 机身蒙皮、机翼的壁板 | 超声波切割技术能够显著降低所需的切割力,并最大限度地减少了对复合材料结构的损伤。在切割碳纤维部件时,有助于保持纤维的结构完整性,确保机械性能不受影响 | 超声波加工可以实现高达±1 µm的加工精度 |
| 内饰板、座椅和行李箱的水射流切割加工 | 水射流切割的非热特性意味着这些材料不存在变形或弱化的风险,同时通过优化工艺参数,有效提升加工效率 | 水射流加工技术能够实现严格的公差和复杂的设计,其切口宽度较窄,通常为0.08~0.25 mm |
| 航空结构的电子束打孔微细加工 | 电子束的能量密度高,因而加工生产效率很高,每秒钟可以在2.5 mm厚的钢板上钻50个直径为0.4 mm的孔 | 电子束加工能够实现精度为1~0.1 µm的加工 |
Table 9
Rapid prototyping manufacturing technology
| 技术类型 | 基本原理 | 成型特点 | 应用范围 |
|---|---|---|---|
| 光固化立体造型 | 基于液态光敏树脂的光聚合原理,通过紫外激光逐层扫描固化树脂 | 技术成熟、应用广、生产周期短、精度高,表面质量好、自动化程度高 设备成本高、环境要求高、材料价格贵、成型性能差 | 光敏性、流动性、稳定性较好的弹性、高韧性树脂等 |
| 分层物件制造 | 利用薄片材料(纸、塑料薄膜)逐层叠加并切割,通过热压粘合 | 成本低、速度快、无需支撑结构、适合大尺寸工件、过程稳定、精度高 材料利用率低、种类有限、成型性能差、后处理复杂 | 纸、塑料薄膜、金属箔等薄层材料 |
| 选择性激光烧结 | 使用激光束逐层烧结粉末材料(塑料、金属粉末) | 材料及结构范围广、利用率高、无需支撑结构、强度高 表面质量差、环境污染、设备成本高 | 塑料粉(尼龙、聚苯乙烯)、陶瓷粉、金属粉及蜡粉等 |
| 熔融沉积造型 | 通过加热熔化丝状材料,逐层挤出并固化 | 成本低、材料多样、操作简便、环保、个性化 定制 精度低、表面质量差、材料强度有限、成型速度慢、尺寸受限 | 塑料、尼龙、聚碳酸酯等 |
| 三维打印 | 通过逐层堆积材料 | 设计自由度高、开发周期短、材料选择多样、适用于小批量定制化生产 尺寸限制、表面质量低、材料成本高 | 塑料、金属、陶瓷、复合材料等 |
| 三维焊接 | 利用焊接技术逐层堆积金属材料 | 尺寸或重量不受限制、效率高、废料少,高度自动化 成本高、零件尺寸限制、操作复杂 | 金属粉末、陶瓷粉末等粉末材料 |
Table 10
Differences in application level of additive manufacturing technology in the aerospace field[152]
| 应用层面 | 技术概念 | 技术特征 | 应用范围 |
|---|---|---|---|
| 第一层面 | 采用传统设计方法和材料体系进行构件的增材制造加工 | 解决材料工艺稳定性、成形组织的缺陷和性能提升、成形精度控制等问题,与增材、减材、锻造等多工艺结合来提升成形质量 | 空心涡轮叶片型芯/型壳一体化制备 激光增材工艺成形难熔高温高熵合金 陶瓷基复合材料涡轮叶片增材制造 |
| 第二层面 | 面向新的结构设计进行构件的增材制造加工 | 改变原有基于机械切削工艺的结构设计体系,根本上变革了零件的设计制造理念,使得结构变小、节能效益增加、性能可靠稳定 | 纤维增强聚醚醚酮基复合材料增材制造 宽频大角度吸波结构增材制造 |
| 第三层面 | 采用新材料与结构一体化的增材制造技术实现更多新功能 | 使航空航天技术在轻质、特种性能和特殊环境下的结构制造提供新方法(连续纤维复合材料制造、太空环境下的制造) | 连续纤维增强复合材料3D打印 太空连续纤维复合材料3D打印 |
Table 11
Engineering applications and significance of advanced manufacturing theory and technology
| 工程应用 | 意义 | |
|---|---|---|
| 先进材料研制与处理 | 高性能高分子材料及其复合材料、高温与特种金属结构材料、轻质高强金属及其复合材料、先进结构陶瓷及其复合材料、石墨烯等新型材料 | 实现航空航天复杂形状产品的高精度加工 提升零部件力学性能 推动制造过程的智能化、高效化和可靠化 |
| 生产技术改进与革新 | 高速切削、磨削等高效成型技术;精密铸造、精密锻造、粉末冶金等毛坯精密成型技术;特种加工技术;快速原型制造技术;复合工艺制造技术 | |
| 生产过程调整与控制 | 优化刀具路径、夹具结构等方法控制加工变形;传感、测量技术;数控加工技术;温度、压力、切削力等实时监控、加工策略的及时调整 | |
Table 12
Implementation steps and challenges of design for manufacturing[161]
| 实施步骤 | 挑战 | 未来发展 | |
|---|---|---|---|
| 需求分析 | 明确产品的功能需求、性能要求、市场定位等,收集制造过程中材料选择、工艺流程、成本控制等限制条件 | 专业能力参差不齐 评审方式滞后 跨部门协作困难 发现问题时机滞后 | 注重环保材料的使用、能源消耗的优化以及产品生命周期的管理 实现远程监控、自动化运行以及更精准的制造过程控制 更注重用户需求,以提供更符合用户期望的产品和服务 与多学科交叉融合,共同解决 复杂的制造问题,促进创新和 多元化 |
| 制定设计规范 | 制定产品的功能要求、性能指标、尺寸和形状要求、材料选择、制造工艺等设计规范,为后续工作提供指导 | ||
| 设计优化 | 在整个设计过程中,不断考虑制造因素,优化设计方案,提升产品的可制造性、降低生产成本、提高生产效率 | ||
| 项目管理与应用 | 用于产品开发的整个生命周期,从概念设计到生产准备,充分考虑设计原则,以预见并解决潜在的制造问题 | ||
| 1 | 闫存富, 孔令云, 杨汉嵩. 先进制造技术概述[J]. 新技术新工艺, 2013, 22(12): 18-20. |
| YAN C F, KONG L Y, YANG H S. Overview of advanced manufacturing technology[J]. New Technology and New Process, 2013, 22(12): 18-20 (in Chinese). | |
| 2 | 李锡柱. 先进制造技术发展现状及趋势分析[J]. 中国机械, 2023, 42(23): 17-21. |
| LI X Z. Analysis of the current status and trends of advanced manufacturing technology development[J]. Machine China, 2023, 42(23): 17-21 (in Chinese). | |
| 3 | SIDDIQUI H, SINGH N, NAIDU P, et al. Emerging electrochemical additive manufacturing technology for advanced materials: structures and applications[J]. Materials Today, 2023, 70: 161-192. |
| 4 | 梁伟, 王先. 先进制造技术在航空业的应用与发展[J]. 科技视界, 2013, 3(10): 53, 207. |
| LIANG W, WANG X. Application and development of advanced manufacturing technology in the aviation industry[J]. Science and Technology Vision, 2013, 3(10): 53, 207 (in Chinese). | |
| 5 | BAITIMEROV R M, BYKOV V A. Processing of alumina reinforced copper metal matrix composite by selective laser melting technology[J]. Solid State Phenomena, 2021, 316: 175-180. |
| 6 | NUMAN K, ANIELLO R. A systematic review of design for additive manufacturing of aerospace lattice structures: current trends and future directions[J]. Progress in Aerospace Sciences, 2024, 149: 101021. |
| 7 | BATYGIN Y V, CHAPLYGIN E A, SABOKAR O S. Magnetic pulsed processing of metals for advanced technologies of modernity-a brief review[J]. Electrical Engineering and Electromechanics, 2016, 5: 35-39. |
| 8 | 林洁琼, 吴明磊, 刘思洋, 等. 超声振动辅助切削SiCp/Al复合材料的加工机理及试验[J]. 中国表面工程, 2024, 37(2): 182-198. |
| LIN J Q, WU M L, LIU S Y, et al. Processing mechanism and experiment of ultrasonic vibration assisted cutting of SiCp/Al composites[J]. China Surface Engineering, 2024, 37(2): 182-198 (in Chinese). | |
| 9 | 韩蕾, 史振宇, 袭建人, 等. 陶瓷基复合材料超声振动辅助加工技术研究现状[J]. 工具技术, 2024, 58(3): 3-20. |
| HAN L, SHI Z Y, XI J R, et al. Research status of ultrasonic vibration assisted machining technology for ceramic matrix composites[J]. Tool Engineering, 2024, 58(3): 3-20 (in Chinese). | |
| 10 | 张园, 康仁科, 刘津廷, 等. 超声振动辅助钻削技术综述[J]. 机械工程学报, 2017, 53(19): 33-44. |
| ZHANG Y, TANG R K, LIU J Y, et al. Review of ultrasonic vibration assisted drilling[J]. Journal of Mechanical Engineering, 2017, 53(19): 33-44 (in Chinese). | |
| 11 | 张士宏, 程明, 宋鸿武, 等. 航空航天复杂曲面构件精密成形技术的研究进展[J]. 南京航空航天大学学报, 2020, 52(1): 1-11. |
| ZHANG S H, CHENG M, SONG H W, et al. Research progress on precision forming technology for complex curved surface components in aerospace[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2020, 52(1): 1-11 (in Chinese). | |
| 12 | 钟紫鹏, 苏国康, 李俊飞, 等. 电解加工大深径比小孔及参数优化[J]. 西安工业大学学报, 2024, 44(3): 263-272. |
| ZHONG Z P, SU G K, LI J F, et al. Electrochemical machining of deep-small holes and parameter optimization[J]. Journal of Xi’an Technological University, 2024, 44(3): 263-272 (in Chinese). | |
| 13 | 彭振龙, 张翔宇, 张德远. 航空航天难加工材料高速超声波动式切削方法[J]. 航空学报, 2022, 43(4): 67-85. |
| PENG Z L, ZHANG X Y, ZHANG D Y. High-speed ultrasonic vibration cutting for difficult-to-machine materials in aerospace field[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 67-85 (in Chinese). | |
| 14 | 辛艳喜, 蔡高参, 胡彪, 等. 3D打印主要成形工艺及其应用进展[J]. 精密成形工程, 2021, 13(6): 156-164. |
| XIN Y X, CAI G S, HU B, et al. Recent development of main process types of 3D printing technology and application[J]. Journal of Netshape Forming Engineering, 2021, 13(6): 156-164 (in Chinese). | |
| 15 | AHN D G. Direct metal additive manufacturing processes and their sustainable applications for green technology: a review[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2016, 3(4): 381-395. |
| 16 | ZHAO B, WANG Y F, PENG J H, et al. Overcoming challenges: advancements in cutting techniques for high strength-toughness alloys in aero-engines[J]. Journal of Extreme Manufacturing, 2024, 6(6): 062012. |
| 17 | ALI S H, YAO Y, WU B F, et al. Recent developments in MQL machining of aeronautical materials: a comparative review[J]. Chinese Journal of Aeronautics, 2025, 38(1):102918. |
| 18 | ZHAO B, DING W F, SHAN Z D, et al. Collaborative manufacturing technologies of structure shape and surface integrity for complex thin-walled components of aero-engine: status, challenge and tendency[J]. Chinese Journal of Aeronautics, 2023, 36(7): 1-24. |
| 19 | ZHAO G L, ZHAO B, DING W F, et al. Nontraditional energy-assisted mechanical machining of difficult-to-cut materials and components in aerospace community: a comparative analysis[J]. International Journal of Extreme Manufacturing, 2024, 6(2): 022007. |
| 20 | MANIKANDAN N, BALASUBRAMANIAN K, PALANISAMY D, et al. Machinability analysis and ANFIS modelling on advanced machining of hybrid metal matrix composites for aerospace applications[J]. Materials and Manufacturing Processes, 2019, 34(16): 1866-1881. |
| 21 | 黄传真, 刘增文, 刘含莲, 等. 先进制造技术概述[J]. 现代制造技术与装备, 2004, 40(4): 3-7, 61. |
| HUANG C Z, LIU Z W, LIU H L, et al. A summary on advanced manufacturing technology[J]. Modern Manufacturing Technology and Equipment, 2004, 40(4): 3-7, 61 (in Chinese). | |
| 22 | 吴良芹. 先进制造技术及其发展[J]. 机械制造与自动化, 2009, 38(1): 84-86. |
| WU L Q. Developing of advanced manufacture technology[J]. Machine Building and Automation, 2009, 38(1): 84-86 (in Chinese). | |
| 23 | PENG Z L, HAN A W, WANG C L, et al. Ultrasonic vibration cutting of advanced aerospace materials: a critical review of in-service functional performance[J]. Journal of Intelligent Manufacturing and Special Equipment, 2024, 5(1): 137-169. |
| 24 | 王焱, 王文理. 先进刀具技术与航空零件切削加工[J]. 航空制造技术, 2009, 52(23): 38-42. |
| WANG Y, WANG W L. Advanced cutting tool technology for aircraft component machining[J]. Aeronautical Manufacturing Technology, 2009, 52(23): 38-42 (in Chinese). | |
| 25 | 张翔宇, 彭振龙. 难加工合金高速高质超声切削加工方法及应用[J]. 金属加工(冷加工), 2023, 74(7): 9-15. |
| ZHANG X Y, PENG Z L. High-speed and high-quality ultrasonic cutting method and its application for difficult-to-machine alloys[J]. Metal Working (Metal Cutting), 2023, 74(7): 9-15 (in Chinese). | |
| 26 | YUI A, LEE H S. Surface grinding with ultra-high speed CBN wheel[J]. Journal of Materials Processing Technology, 1996, 62(4): 393-396. |
| 27 | SHIH J, MCSPADDEN S B, MORRIS T O, et al. High speed and high material removal rate grinding of ceramics using the vitreous bond CBN wheel[J]. Machining Science and Technology, 2000, 4(1): 43-58. |
| 28 | HWANG T W, EVANS C J, WHITENTON E P, et al. High speed grinding of silicon nitride with electroplated diamond wheels, part 1: wear and wheel life[J]. Journal of Manufacturing Science and Engineering, 2000, 122(1): 32-41. |
| 29 | CHOUDHURY S K, JAIN V K, GUPTA M. Electrical discharge diamond grinding of high speed steel[J]. Machining Science and Technology, 1999, 3(1): 91-105. |
| 30 | HUANG H, LIU Y C. Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding[J]. International Journal of Machine Tools and Manufacture, 2003, 43(8): 811-823. |
| 31 | RAMESH K, HUANG H, YIN L. Analytical and experimental investigation of coolant velocity in high speed grinding[J]. International Journal of Machine Tools and Manufacture, 2004, 44(10): 1069-1076. |
| 32 | CHEN J Y, SHEN J Y, HUANG H, et al. Grinding characteristics in high speed grinding of engineering ceramics with brazed diamond wheels[J]. Journal of Materials Processing Technology, 2010, 210(6): 899-906. |
| 33 | YANG L, FU Y C, XU J H, et al. Structural design of a carbon fiber-reinforced polymer wheel for ultra-high speed grinding[J]. Materials and Design, 2015, 88: 827-836. |
| 34 | LI Z, DING W F, SHEN L, et al. Comparative investigation on high-speed grinding of TiCp/Ti-6Al-4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels[J]. Chinese Journal of Aeronautics, 2016, 29(5): 1414-1424. |
| 35 | ZHU Y J, DING W F, RAO Z W, et al. Self-sharpening ability of monolayer brazed polycrystalline CBN grinding wheel during high-speed grinding[J]. Ceramics International, 2019, 45(18): 24078-24089. |
| 36 | NASKAR A, CHOUDHARY A, PAUL S. Wear mechanism in high-speed superabrasive grinding of titanium alloy and its effect on surface integrity[J]. Wear, 2020, 462: 203475. |
| 37 | LEI X F, XIANG D H, PENG P C, et al. Establishment of dynamic grinding force model for ultrasonic-assisted single abrasive high-speed grinding[J]. Journal of Materials Processing Technology, 2022, 300: 117420. |
| 38 | 宗影影, 王琪伟, 袁林, 等. 航空航天复杂构件的精密塑性体积成形技术[J]. 锻压技术, 2021, 46(9): 1-15. |
| ZONG Y Y, WANG Q W, YUAN L, et al. Precision plastic volume forming technology for aerospace complex components[J]. Forging and Stamping Technology, 2021, 46(9): 1-15 (in Chinese). | |
| 39 | WANG Y L, ZHAO Q L, SHANAG Y J, et al. Ultra-precision machining of Fresnel microstructure on die steel using single crystal diamond tool[J]. Journal of Materials Processing Technology, 2011, 211(12): 2152-2159. |
| 40 | YUAN J L, LYU B H, HANG W, et al. Review on the progress of ultra-precision machining technologies[J]. Frontiers of Mechanical Engineering, 2017, 12(2): 158-180. |
| 41 | LEE J M, KIM Y B, PARK J W. Pulse electrochemical meso/micro/nano ultraprecision machining technology[J]. Journal of Nanoscience and Nanotechnology, 2014, 14(5): 4006. |
| 42 | KUMAR P, SINGH P K, KUMAR D, et al. A novel application of micro-EDM process for the generation of nickel nanoparticles with different shapes[J]. Materials and Manufacturing Processes, 2017, 32(5): 564-572. |
| 43 | FU H, ZHOU X Y, WU B, et al. Atomic-scale dissecting the formation mechanism of gradient nanostructured layer on Mg alloy processed by a novel high-speed machining technique[J]. Journal of Materials Science and Technology, 2021, 82: 227-238. |
| 44 | 顾宁, 闵光伟, 鲁武, 等. STM纳米加工技术进展[J]. 电工电能新技术, 1994, 13(2): 18-23. |
| GU N, MIN G W, LU W, et al. Progress in STM nanofabrication technology[J]. Advanced Technology of Electrical Engineering, 1994, 13(2): 18-23 (in Chinese). | |
| 45 | 荣烈润. 微机械及其微细加工技术的现状和应用研究[J]. 机电一体化, 2002, 8(3): 11-13. |
| RONG L R. The present situation and application study of micromechanism (MEMS) and their microfabrication technology[J]. Mechatronics, 2002, 8(3): 11-13 (in Chinese). | |
| 46 | JEONG Y H, HANYOO B, LEE H U, et al. Deburring microfeatures using micro-EDM[J]. Journal of Materials Processing Technology, 2009, 209(14): 5399-5406. |
| 47 | TANG T, FENG X, HUANG T Q, et al. Research on the combined electrochemical machining and electrical discharge machining technology for closed integer impeller[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(9-12): 3419-3429. |
| 48 | JERZY K, LUCJAN D, KONRAD L, et al. CAE-ECM system for electrochemical technology of parts and tools[J]. Journal of Materials Processing Technology, 2000, 107(1): 293-299. |
| 49 | ARVIND K, HARI S, VINOD K. Study the parametric effect of abrasive water jet machining on surface roughness of Inconel 718 using RSM-BBD techniques[J]. Materials and Manufacturing Processes, 2018, 33(13): 1483-1490. |
| 50 | 葛璜. 电子束、离子束、光子束纳米微细加工技术的进展[J]. 仪器仪表学报, 1996, 17(S1): 70-74. |
| GE H. Progress in electron beam, ion beam, and photon beam nanomicrofabrication technology[J]. Chinese Journal of Scientific Instrument, 1996, 17(S1): 70-74 (in Chinese). | |
| 51 | 靳晓明, 郭睿智. 高压水射流技术在机械制造业的应用[J]. 中国科技信息, 2012, 24(12): 163-164. |
| JIN X M, GUO R Z. The application of high pressure water-jet technology in machinery manufacture[J]. China Science and Technology Information, 2012, 24(12): 163-164 (in Chinese). | |
| 52 | 刘松良. 铝合金超声波表面光饰加工技术研究[J]. 机械设计与制造, 2012, 50(5): 277-279. |
| LIU S L. Technology research of aluminum alloy ultrasonic surface polishing process[J]. Machinery Design and Manufacture, 2012, 50(5): 277-279 (in Chinese). | |
| 53 | PILIPOVIĆ A, RAOS P, ŠERCER M. Experimental analysis of properties of materials for rapid prototyping[J]. International Journal of Advanced Manufacturing Technology, 2009, 40(1-2): 105-115. |
| 54 | 张政, 厉丹彤, 冯小保, 等. 基于快速原型的夹具设计[J]. 机床与液压, 2015, 43(7): 124-126. |
| ZHANG Z, LI D T, FENG X B, et al. Fixture design based on RP technology[J]. Machine Tool and Hydraulics, 2015, 43(7): 124-126 (in Chinese). | |
| 55 | 李晓蓓, 安桂华, 李敏贤. 快速原型制造(RPM)技术的发展及在制造业中的应用[J]. 机电产品开发与创新, 1998, 11(4): 34-35, 38. |
| LI X B, AN G H, LI M X. Development of rapid prototype manufacturing (RPM) technology and application in manufacturing industry[J]. Development and Innovation of Machinery and Electrical Products, 1998, 11(4): 34-35, 38 (in Chinese). | |
| 56 | 卢秉恒, 唐平, 李涤尘. 激光快速原型制造技术的发展与应用[J]. 航空制造工程, 1997, 40(7): 15-17. |
| LU B H, TANG P, LI D C. Development and application of laser rapid prototype manufacturing technology[J]. Aviation Maintenance and Engineering, 1997, 40(7): 15-17 (in Chinese). | |
| 57 | 陈建环, 马波. 快速成形/零件制造技术[J]. 智能制造, 2004, 11(Z1): 118-123. |
| CHEN J H, MA B. Rapid prototyping/parts manufacturing technology[J]. Intelligent Manufacturing, 2004, 11(Z1): 118-123 (in Chinese). | |
| 58 | CAVALEIRO D, FIGUEIREDO D, MOURA C W, et al. Machining performance of TiSiN(Ag) coated tools during dry turning of TiAl6V4 aerospace alloy[J]. Ceramics International, 2021, 47(8): 11799-11806. |
| 59 | DOMENICO U. Investigation of surface integrity in dry machining of Inconel 718[J]. International Journal of Advanced Manufacturing Technology, 2013, 69(9-12): 2183-2190. |
| 60 | PAZHANI A, VENKATRAMAN M, ANTHONY X M, et al. Synthesis and characterisation of graphene-reinforced AA 2014 MMC using squeeze casting method for lightweight aerospace structural applications[J]. Materials and Design, 2023, 230: 111990. |
| 61 | 沙小伟, 黎向锋, 左敦稳, 等. 飞机起落架内螺纹冷挤压成形过程的研究[J]. 航空制造技术, 2010, 53(2): 75-78. |
| SHA X W, LI X F, ZUO D W, et al. Study on process of cold extrusion forming internal thread of aircraft landing gear[J]. Aeronautical Manufacturing Technology, 2010, 53(2): 75-78 (in Chinese). | |
| 62 | 张文峰, 朱获. 电沉积纳米复合材料的研究与应用[J]. 材料导报, 2003, 17(8): 57–60. |
| ZHANG W F, ZHU D. Electrodeposited nanocomposites: research advances and applications[J]. Materials Reports, 2003, 17(8): 57-60 (in Chinese). | |
| 63 | LIU Q, LI Q, CHEN Z, et al. Study on abrasive belt grinding process assisted by ultrasonic elliptic vibration[J]. International Journal of Advanced Manufacturing Technology, 2022, 120(7-8): 4647-4661. |
| 64 | YI J, PEI K L, LI Z H, et al. Numerical and experimental investigation on temperature field during small-module gear creep feed deep profile grinding[J]. International Journal of Advanced Manufacturing Technology, 2024, 132(9-10): 4965-4977. |
| 65 | WANG D K. Research on surface integrity and its influencing factors in the high-speed cutting of typical aluminum/titanium/nickel alloys: a review[J]. International Journal of Advanced Manufacturing Technology, 2023, 127(9-10): 4915-4942. |
| 66 | ZHANG P, WANG S X, LIN Z Y, et al. Investigation on micro-cutting and chip formation mechanism of CoCrFeNiAlX series high-entropy alloy[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, 46(3): 118. |
| 67 | ZHANG X, CHENG Y T, LV M Q, et al. Study on high-speed vibration cutting of titanium alloy considering cutting edge radii[J]. International Journal of Advanced Manufacturing Technology, 2022, 124(10): 3327-3342. |
| 68 | HAO Z P, WANG X D, FAN Y H. Dynamic behavior and formation mechanism of shear band during high-speed cutting Inconel 718[J]. International Journal of Advanced Manufacturing Technology, 2024, 133(5-6): 2235-2254. |
| 69 | SUN H W, ZOU B, CHEN W, et al. Chatter failure comparison for high-speed milling of aerospace GH4099 with silicon nitride ceramic end mills: a laboratory scale investigation[J]. Engineering Failure Analysis, 2024, 157: 107891. |
| 70 | WANG X, ZHAO B, DING W F, et al. Wear mechanisms of coated carbide tools during high-speed face milling of Ti2AlNb intermetallic alloys[J]. International Journal of Advanced Manufacturing Technology, 2023, 131(5-6): 2881-2892. |
| 71 | ABBAS A T, BAHKALI E A AL, ALQAHTANI S M, et al. Fundamental investigation into tool wear and surface quality in high-speed machining of Ti6Al4V alloy[J]. Materials, 2021, 14(23): 7128. |
| 72 | YU W W, MING W W, AN Q L, et al. Wear behavior of SiAlON ceramic tool and its effects during high-speed cutting[J]. Ceramics International, 2023, 49(16): 26694-26706. |
| 73 | ZHANG G Q, ZHANG J J, FAN G H, et al. The effect of chip formation on the cutting force and tool wear in high-speed milling Inconel 718[J]. International Journal of Advanced Manufacturing Technology, 2023, 127(1-2): 335-348. |
| 74 | TU L Q, LIN L L, LIU C, et al. Tool wear characteristics analysis of CBN cutting tools in high-speed turning of Inconel 718[J]. Ceramics International, 2023, 49(1): 635-658. |
| 75 | FANG W, WANG J M, CAI F, et al. Effects of multilayer structure on impacting fatigue resistance and high-speed dry cutting performance against Ti-6Al-4V of AlTiN/AlTiBN multilayer coatings[J]. Tribology International, 2024, 192: 109258. |
| 76 | WANG D Q, YIN L, HÄNEL A, et al. Cutting performance of binderless nano-polycrystalline CBN and PCBN milling tools for high-speed milling of hardened steel[J]. Ceramics International, 2023, 49(22): 34757-34773. |
| 77 | ZHANG L F, ZHANG X G. A comparative experimental study of unidirectional CFRP high-speed milling in up and down milling with varied angles[J]. Journal of Manufacturing Processes, 2023, 101: 1147-1157. |
| 78 | LI S C, XIAO G J, ZHUO X Q, et al. Fatigue performance and failure mechanism of ultrasonic-assisted abrasive-belt-ground Inconel 718[J]. International Journal of Fatigue, 2023, 168: 107406. |
| 79 | LI X, YANG S L, LU Z H, et al. Influence of ultrasonic peening cutting on surface integrity and fatigue behavior of Ti-6Al-4V specimens[J]. Journal of Materials Processing Technology, 2019, 275: 116386. |
| 80 | CHANG B Q, YI Z X, ZHANG F, et al. A comprehensive research on wear resistance of GH4169 superalloy in longitudinal-torsional ultrasonic vibration side milling with tool wear and surface quality[J]. Chinese Journal of Aeronautics, 2024, 37(4): 556-573. |
| 81 | CHANG B Q, YI Z X, DUAN L, et al. Surface wear resistance and microstructure characteristic in longitudinal-torsional ultrasonic vibration side milling of GH4169 superalloy[J]. Applied Surface Science, 2024, 649: 159075. |
| 82 | PENG Z L, ZHANG X Y, ZHANG Y, et al. Wear resistance enhancement of Inconel 718 via high-speed ultrasonic vibration cutting and associated surface integrity evaluation under high-pressure coolant supply[J]. Wear, 2023, 530-531: 205027. |
| 83 | SHU X D, YE C Q, WANG J T, et al. Analysis and prospect of precision plastic forming technologies for production of high-speed-train hollow axles[J]. Metals, 2023, 13(1): 145. |
| 84 | 华林, 冯玮, 韩星会, 等. 齿轮精密塑性成形理论技术装备研究与应用[J]. 塑性工程学报, 2024, 31(4): 56-73. |
| HUA L, FENG W, HAN X H, et al. Research and application of theory technology and equipment on gear precision plastic forming[J]. Journal of Plasticity Engineering, 2024, 31(4): 56-73 (in Chinese). | |
| 85 | 张博威, 杨斌, 单垄垄, 等. 航空航天高精密法兰盘的加工[J]. 金属加工(冷加工), 2023, 74(4): 38-41. |
| ZHANG B W, YANG B, SHAN L L, et al. Machining of aerospace high precision flanges[J]. Metal Working (Metal Cutting), 2023, 74(4): 38-41 (in Chinese). | |
| 86 | 骆静, 张婧, 桓思颖, 等. 内花键双联齿轮的精密塑性成形[J]. 锻压技术, 2022, 47(12): 103-108. |
| LUO J, ZHANG J, HUAN S Y, et al. Precision plastic forming of internal spline double gear[J]. Forging and Stamping Technology, 2022, 47(12): 103-108 (in Chinese). | |
| 87 | NING P, ZHAO J, JI S, et al. Surface defects formation mechanism of Mg2Si/Al composites by micro cutting[J]. Precision Engineering, 2024, 88: 324-340. |
| 88 | REGAIEG A, BELGUITH R, SAI L. Enhanced modeling of instantaneous uncut chip thickness and cutter workpiece engagement region in 5 axis ball end milling: case of the tilt orientation[J]. Journal of Manufacturing Processes, 2024, 121: 289-311. |
| 89 | de OLIVEIRA F B, RODRIGUES A R, COELHO R T, et al. Size effect and minimum chip thickness in micromilling[J]. International Journal of Machine Tools and Manufacture, 2015, 89: 39-54. |
| 90 | 张欣欣, 许金凯, 于化东. 高速微铣削难加工材料切削参数优化试验研究[J]. 组合机床与自动化加工技术, 2015, 57(8): 19-23. |
| ZHANG X X, XU J K, YU H D. The experiment research of cutting parameters optimization in high-speed micro-milling hard processing materials[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2015, 57(8): 19-23 (in Chinese). | |
| 91 | 田璐, 韩旭炤, 高峰, 等. 微细铣削技术研究综述[J]. 机械强度, 2019, 41(03): 618-624. |
| TIAN L, HAN X Z, GAO F, et al. Review of micro-milling technology[J]. Journal of Mechanical Strength, 2019, 41(03): 618-624 (in Chinese). | |
| 92 | LIU F Y, CHEN T, DUAN Z Y, et al. Ultrasonic assisted pecking drilling process for CFRP/Ti laminated materials[J]. Journal of Manufacturing Processes, 2023, 108: 834-851. |
| 93 | 罗军, 李楠, 王曦, 等. 纳米压痕法测量航空发动机关键材料残余应力的研究进展[J]. 材料导报, 2024, 38(11): 220-232. |
| LUO J, LI N, WANG X, et al. Research progress of nanoindentation methods for measuring residual stress in critical materials of aero-engine[J]. Materials Reports, 2024, 38(11): 220-232 (in Chinese). | |
| 94 | WANG J S, FANG F Z, AN H J, et al. Laser machining fundamentals: micro, nano, atomic and close-to-atomic scales[J]. International Journal of Extreme Manufacturing, 2023, 5: 012005. |
| 95 | QIN F, LIU B Q, ZHU L W, et al. π-phase modulated monolayer supercritical lens[J]. Nature Communications, 2021, 12(32): 1-9. |
| 96 | ZHANG P, XIAO C, CHEN C, et al. Effect of abrasive particle degradation on tribo-chemical wear of monocrystalline silicon[J]. Wear, 2019, 426-427: 1240-1245. |
| 97 | CHEN L, WEN J L, ZHANG P, et al. Nanomanufacturing of silicon surface with a single atomic layer precision via mechanochemical reactions[J]. Nature Communications, 2018, 9: 1542. |
| 98 | LIU Z H, GONG J, XIAO C, et al. Temperature-dependent mechanochemical wear of silicon in water: the role of Si-OH surfacial groups[J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2019, 35(24): 7735-7743. |
| 99 | GUO J, GONG J, SHI P F, et al. Study on the polishing mechanism of pH-dependent tribochemical removal in CMP of CaF2 crystal[J]. Tribology International, 2020, 150: 106370. |
| 100 | KENTA A, AKIHISA K, HIDEKAZU M, et al. Highly resolved scanning tunneling microscopy study of Si(001) surfaces flattened in aqueous environment[J]. Surface Science, 2006, 600(15): 185-188. |
| 101 | HAN W, MATHEW P T, KOLAGATLA S, et al. Toward single-atomic-layer lithography on highly oriented pyrolytic graphite surfaces using AFM-based electrochemical etching[J]. Nanomanufacturing and Metrology, 2022, 5(1): 32-38. |
| 102 | JOHNSON R W, HULTQVIST A, BENT S F. A brief review of atomic layer deposition: from fundamentals to applications[J]. Materials Today, 2014, 17(5): 236-246. |
| 103 | WILLKE P, PAUL W, NATTERER F D, et al. Probing quantum coherence in single-atom electron spin resonance[J]. Science Advances, 2018, 4(2): 1543. |
| 104 | 宋凤麒, 戴庆. 原子制造:物质科学的未来技术[J]. 物理, 2023, 52(6): 371-380. |
| SONG F L, DAI Q. Atom manufacturing: a future technique of physical sciences[J]. Physics, 2023, 52(6): 371-380 (in Chinese). | |
| 105 | LIAO M Z, NICOLINI P, DU L J, et al. Ultra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures[J]. Nature Materials, 2022, 21(1): 47-53. |
| 106 | LI Y C, QI Z L, LAN Y X, et al. Self-aligned patterning of tantalum oxide on Cu/SiO2 through redox-coupled inherently selective atomic layer deposition[J]. Nature Communications, 2023, 14(1): 4493. |
| 107 | ANDRIUS Ž, UGNĖ G, SAULĖ S, et al. The ultrafast burst laser ablation of metals: speed and quality come together[J]. Optics and Laser Technology, 2025, 180: 111458. |
| 108 | KONG X J, WANG Y D, LIU X L, et al. Research on the removal mechanism and surface damage of laser assisted cutting of CFRP materials[J]. Journal of Manufacturing Processes, 2024, 124: 196-211. |
| 109 | TIAN J Z, YE M, SONG X D, et al. Effect of low temperature on fatigue crack propagation behavior of QP980 steel and laser-welded joint[J]. Materials Letters, 2024, 377: 137326. |
| 110 | LI J J, WU H Y, LIU H X, et al. Surface and property characterization of selective laser-melted Ti-6Al-4V alloy after laser polishing[J]. International Journal of Advanced Manufacturing Technology, 2023, 128(1-2): 703-714. |
| 111 | 苏铭. 微细电火花加工机理研究[J]. 一重技术, 2022, 61(1): 47-50. |
| SU M. Research on micro EDM working principle[J]. CFHI Technology, 2022, 61(1): 47-50 (in Chinese). | |
| 112 | 周义涛, 沈云, 奚天鹏, 等. 基于电火花-电解复合加工的钨材料微小孔加工研究[J]. 机械制造与自动化, 2023, 52(4): 41-43, 72. |
| ZHOU Y T, SHEN Y, XI T, et al. Micro hole machining of tungsten materials based on EDM-electrolysis composite machining[J]. Machine Building and Automation, 2023, 52(4): 41-43, 72 (in Chinese). | |
| 113 | REN M Z, ZHU D, ZHOU X Q, et al. Effects of electrochemical machining on high-cycle fatigue of Inconel 718 blades[J]. Engineering Failure Analysis, 2024, 165: 108838. |
| 114 | REN M Z, ZHU D, ZHOU X Q, et al. Surface quality enhancement in ultrasonic vibration-assisted electrochemical machining[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2024, 703(P1): 135188. |
| 115 | JEONG J U, LEE K K, AHN D G, et al. Study of surface roughness change of AlSi10Mg based on selective laser melting (SLM) using electro-polishing technique[J]. Journal of Mechanical Science and Technology, 2024, 38: 4579-4585. |
| 116 | 张德远, 黄志勇, 张翔宇. 超声加工的技术发展与行业应用[J]. 电加工与模具, 2021, 56(4): 1-14. |
| ZHANG D Y, HUANG Z Y, ZHANG X Y. Technological development industries and applications of ultrasonic machining[J]. Electromachining and Mould, 2021, 56(4): 1-14 (in Chinese). | |
| 117 | 章继. 超声波焊接加工质量受焊头压力的影响分析[J]. 新型工业化, 2020, 10(7): 95-97. |
| ZHANG J. Analysis of the influence of welding head pressure on the quality of ultrasonic welding processing[J]. Journal of New Industrialization, 2020, 10(7): 95-97 (in Chinese). | |
| 118 | 叶涛, 李骏, 陈家欣, 等. 焊接电流对超声波焊接加工质量的影响[J]. 机电工程技术, 2019, 48(10): 54-56. |
| YE T, LI J, CHEN J X, et al. Effect of welding current on ultrasonic welding quality[J]. Mechanical and Electrical Engineering Technology, 2019, 48(10): 54-56 (in Chinese). | |
| 119 | AO S S, LI C J, ZHANG W, et al. Microstructure evolution and mechanical properties of Al/Cu ultrasonic spot welded joints during thermal processing[J]. Journal of Manufacturing Processes, 2019, 41: 307-314. |
| 120 | LESYK D A, MORDYUK B N, DZHEMELINSKYI V V, et al. Optimization of ultrasonic impact treatment for surface finishing and hardening of AISI O2 tool steel by experimental design[J]. Journal of Materials Engineering and Performance, 2022, 31(10) : 8567-8584. |
| 121 | 刘鸿智. 超声波在机械研磨加工中的应用[J]. 河南科技, 2018, 37(5): 622-63. |
| LIU H Z. The application of ultrasonic in mechanical grinding[J]. Henan Science and Technology, 2018, 37(5): 62-63 (in Chinese). | |
| 122 | JIAO F, ZHAO B. Research on ultrasonic aided fixed-abrasive lapping technology for engineering ceramic scylindrical part[C]∥11th International Manufacturing Science and Engineering Conference. 2016: 3. |
| 123 | GUO C, ZHU X J. Effect of ultrasound on dynamics characteristic of the cavitation bubble in grinding fluids during honing process[J]. Ultrasonics, 2018, 84: 13-24. |
| 124 | GENG D X, TENG Y D, LIU Y H, et al. Experimental study on drilling load and hole quality during rotary ultrasonic helical machining of small-diameter CFRP holes[J]. Journal of Materials Processing Technology, 2019, 270: 195-205. |
| 125 | SHEN J Y, ZHU X, CHEN J B, et al. Investigation on the edge chipping in ultrasonic assisted sawing of monocrystalline silicon[J]. Micromachines, 2019, 10(9): 616. |
| 126 | YAO G, ZHANG D Y, GENG D X, et al. Novel ultrasonic vibration-assisted electrosurgical cutting system for minimizing tissue adhesion and thermal injury[J]. Materials and Design, 2021, 201(1): 109528. |
| 127 | 胡明钦. 超声波在工程陶瓷中加工微孔的研究[J]. 黑龙江科技信息, 2011, 15(11): 2. |
| HU M X. Research on ultrasonic processing of micro pores in engineering ceramics[J]. Scientific and Technological Innovation, 2011, 15(11): 2 (in Chinese). | |
| 128 | GENG D X, LU Z H, YAO G, et al. Cutting temperature and resulting influence on machining performance in rotary ultrasonic elliptical machining of thick CFRP[J]. International Journal of Machine Tools and Manufacture, 2017, 123: 160-170. |
| 129 | YU T B, WANG Z H, GUO X P, et al. Effect of ultrasonic vibration on polishing monocrystalline silicon: surface quality and material removal rate[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(5-8): 2109-2119. |
| 130 | DASAEV M, KALAKUTSKAYA O, ZILOVA O, et al. Effect of ultrasonic cleaning after laser texturizing of surface of AISI 316L steel on the degree of wetting and corrosion resistance[J]. Coatings, 2023, 13(12): 266136589. |
| 131 | 王艳华, 樊娴, 徐永新. 利用超声波测厚仪控制铸件壁厚一致性的加工工艺[J]. 金属加工(冷加工), 2014, 65(1): 78. |
| WANG Y H, FAN X, XU Y X. Processing technology for controlling the consistency of casting wall thickness using ultrasonic thickness gauge[J]. Metal Working (Metal Cutting), 2014, 65(1): 78 (in Chinese). | |
| 132 | DARIUSZ U, GRZEGORZ P, ARTUR W, et al. Inspection of spot welded joints with the use of the ultrasonic surface wave[J]. Materials, 2023, 16(21): 7029. |
| 133 | ZHOU R, CAO Y P, SHI W D, et al. Experimental study on surface erosion of Grade-A marine steel with different curvatures by ultra-high pressure water jet[J]. Journal of Materials Research and Technology, 2024, 31: 3025-3034. |
| 134 | SUN H, HU M Y, JIANG G H, et al. Micro-nano twins appearing in ultrafine-grained Ti-6Al-4V alloy induced by high-pressure water jet technology[J]. Materials Research Express, 2022, 9(10): 106514. |
| 135 | MONIKA S B, WOJCIECH K, ŁUKASZ B, et al. Analysis of the process and results of high-pressure abrasive water jet multilayer cutting of electrical steel[J]. Materials, 2023, 17(1): 94. |
| 136 | 曹丽亭, 赵韡, 朱犇犇. 磨料水射流切断面的温度特征试验研究[J]. 机械设计与制造, 2023, 61(5): 51-53. |
| CAO L T, ZHAO W, ZHU B B. Experimental study on temperature characteristics of abrasive water jet cutting surface[J]. Machinery Design and Manufacture, 2023, 61(5): 51-53 (in Chinese). | |
| 137 | YANG J L, SONG J H, PAN J Q, et al. Microstructure evolution and strengthening mechanisms of electron beam welded 2219 aluminum alloy plate after hot spinning and heat treatment[J]. Journal of Materials Research and Technology, 2024, 28: 411-419. |
| 138 | WANG H J, RAN X Z, WANG H C, et al. Microstructure formation mechanism and mechanical properties of super-thickness TC11 titanium alloy joint by electron beam welding and laser additive manufacturing hybrid connection technology[J]. Journal of Materials Processing Technology, 2024, 331: 118502. |
| 139 | 贺怀志, Adnan Safdar, 魏鎏英. 工艺参数设置和厚度对电子束熔融加工Ti-6Al-4V合金微观结构的影响(英文)[J].稀有金属材料与工程, 2021, 50(2): 408-415. |
| HE H Z, SAFDAR A, WEI L Y. Effect of process parameter settings and thickness on microstructures of EBM produced Ti-6Al-4V alloy[J]. Rare Metal Materials and Engineering, 2021, 50(2): 408-415. | |
| 140 | FENG Z Y, WANG J, ZHANG F J, et al. Effect of high current pulsed electron beam on surface microstructure and properties of cold-rolled austenitic stainless steel[J]. Journal of Materials Research and Technology, 2024, 29: 1183-1193. |
| 141 | 白如圣, 谭毅, 崔弘阳, 等. 电子束熔炼功率对GH4068合金微观组织、偏析和γ′相析出行为的影响[J]. 金属学报, 2024, 60(9): 1189-1199. |
| BAI R S, TAN Y, CUI H Y, et al. Effect of electron beam smelting power on microstructure, segregation, and γ′ phase precipitation behavior of GH4068 alloy[J]. Acta Metallurgica Sinica, 2024, 60(9): 1189-1199 (in Chinese). | |
| 142 | WANG H B, JI X L, JIA B. Study on the corrosion resistance of thermal sprayed aerospace coatings under the action of high current pulsed electron beam[J]. Journal of Physics: Conference Series, 2024, 2762(1): 012085. |
| 143 | ALEXANDER M, MARINA V, ENVER M, et al. Plasma-beam processing of tools made of sialon dielectric ceramics to increase wear resistance when cutting nickel-chromium alloys[J]. Coatings, 2022, 12(4): 469. |
| 144 | ZHOU G Q, TIAN Y, SHI F, et al. Low-energy pulsed ion beam technology with ultra-high material removal resolution and widely adjustable removal efficiency[J]. Micromachines, 2021, 12(11): 1370. |
| 145 | 王永刚, 肖正航, 王鹏. 光学元件离子束抛光去除特性研究[J]. 航天制造技术, 2013, 56(3): 8-11. |
| WANG Y G, XIAO Z H, WANG P. The removal characteristics of ion beam polishing optical elements[J]. Aerospace Manufacturing Technology, 2013, 56(3): 8-11 (in Chinese). | |
| 146 | GU D D, SHI X Y, POPRAWE R, et al. Material-structure-performance integrated laser-metal additive manufacturing[J]. Science, 2021, 372(6545). |
| 147 | THOMAS P A, AAHLADA P K, KIRAN N S, et al. A review on transition in the manufacturing of mechanical components from conventional techniques to rapid casting using rapid prototyping[J]. Materials Today: Proceedings, 2018, 5(5): 11990-12002. |
| 148 | 王磊, 卢秉恒. 我国增材制造技术与产业发展研究[J]. 中国工程科学, 2022, 24(4): 202-211. |
| WANG L, LU B H. Development of additive manufacturing technology and industry in China[J]. Strategic Study of CAE, 2022, 24(4): 202-211 (in Chinese). | |
| 149 | 梁朝阳, 张安峰, 梁少端, 等. 高性能钛合金激光增材制造技术的研究进展[J]. 应用激光, 2017, (3): 452-458. |
| LIANG C Y, ZHANG A F, LIANG S R, et al. Research developments of high-performance titanium alloy by laser additive manufacturing technology[J]. Applied Laser, 2017, (3): 452-458 (in Chinese). | |
| 150 | 杨全占, 魏彦鹏, 高鹏, 等. 金属增材制造技术及其专用材料研究进展[J]. 材料导报, 2016, 30(S1): 107-111. |
| YANG Q Z, WEI Y P, GAO P, et al. Research progress of metal additive manufacturing technologies and related materials[J]. Materials Reports, 2016, 30(S1): 107-111 (in Chinese). | |
| 151 | 董世运, 张幸红, 徐滨士, 等. 激光熔覆铜基自生复合材料设计及其涂层研究[J]. 哈尔滨工业大学学报, 2003, 35(2): 160. |
| DONG S Y, ZHANG X H, XU B S, et al. Design of in-situ copper-based composite by laser cladding and study on its coatings[J]. Journal of Harbin Institute of Technology, 2003, 35(2): 160 (in Chinese). | |
| 152 | 李涤尘, 鲁中良, 田小永, 等. 增材制造—面向航空航天制造的变革性技术[J]. 航空学报, 2022, 43(4): 22-38, 3. |
| LI D C, LU Z L, TIAN X Y, et al. Additive manufacturing-revolutionary technology for leading aerospace manufacturing[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(4): 22-38, 3 (in Chinese). | |
| 153 | TANG X P, CHEN X H, SUN F J, et al. The current state of CuCrZr and CuCrNb alloys manufactured by additive manufacturing: a review[J]. Materials and Design, 2022, 224: 111419. |
| 154 | 刘效含. 快速原型制造技术的发展趋势及应用[J]. 黑龙江科学, 2018, 9(6): 32-33. |
| LIU X H. Development trend and application of rapid prototyping technology[J]. Heilongjiang Science, 2018, 9(6): 32-33 (in Chinese). | |
| 155 | 冀永曼. 绿色设计理念在机械制造中的应用[J]. 农机使用与维修, 2023, 46(11): 53-55. |
| JI Y M. The application of green design concept in mechanical engineering[J]. Agricultural Machinery Using and Maintenance, 2023, 46(11): 53-55 (in Chinese). | |
| 156 | 向兵飞, 徐明, 熊勇, 等. 大型航空薄壁零件精确绿色制造技术研究[J]. 组合机床与自动化加工技术, 2015, 57(3): 134-137. |
| XIANG B F, XU M, XIONG Y, et al. Research on precision and greenhouse manufacturing technology for large aircraft panels[J]. Modular Machine Tool and Automatic Manufacturing Technique, 2015, 57(3): 134-137 (in Chinese). | |
| 157 | 刘爱平, 林仁伟, 陈壁茂. 民用飞机复合材料结构在位修理环境控制方法研究[J]. 航空维修与工程, 2021, 66(1): 60-62. |
| LIU A P, LIN R W, CHEN B M. Study on an environmental control method for in-site repair of civil aircraft composite structure[J]. Aviation Maintenance and Engineering, 2021, 66(1): 60-62 (in Chinese). | |
| 158 | 张国庆, 滕超逸. 航空航天先进结构材料技术现状及发展趋势[J]. 航空材料学报, 2024, 44(2): 1-12. |
| ZHANG G Q, TENG C Y. Current status and development trend of advanced structural materials technology in aerospace field[J]. Journal of Aeronautical Materials, 2024, 44(2): 1-12 (in Chinese). | |
| 159 | 倪楠楠, 卞凯, 夏璐, 等. 先进复合材料在无人机上的应用[J]. 航空材料学报, 2019, 39(5): 45-60. |
| NI N N, BIAN K, XIA L, et al. Application of advanced composite materials for UAV[J]. Journal of Aeronautical Materials, 2019, 39(5): 45-60 (in Chinese). | |
| 160 | 黄斌达, 齐雯雯, 朱明熙, 等. 航空机载产品设计制造一体化研制平台的开发[J]. 机床与液压, 2020, 48(9): 61-65. |
| HUANG B D, QI W W, ZHU M X, et al. Development of integrated development platform for design and manufacturing of aviation airborne products[J]. Machine Tool and Hydraulics, 2020, 48(9): 61-65 (in Chinese). | |
| 161 | 蒋敏, 余志强, 王攀. 航空产品设计制造一体化创新研制关键技术[J]. 航空制造技术, 2019, 62(22): 95-101. |
| JIANG M, YU Z Q, WANG P. Key technologies of innovative development for aviation product with integration of design and manufacturing[J]. Aeronautical Manufacturing Technology, 2019, 62(22): 95-101 (in Chinese). |
| [1] | . Influence of droplet transition mode on deposition morphology in droplet-arc hybrid additive manufacturing [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| [2] | . Prediction and experimental verification of time-varying dynamic parameters for milling thin-walled workpieces [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| [3] | . Flow field simulation and experimental research on Immersion electrochemical trepanning of blisk [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| [4] | Yu-Hao WEI. Electrical characterisation of composite aircraft electrical structure network system [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| [5] | Qing GUO, Xiaoyang LIU, Junfeng FAN, Yu FU, Hongfu ZUO. Adaptive gas path fault diagnosis method of civil aviation engine fusing prior information [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 230871-230871. |
| [6] | Jiaxuan HAN, Fan CHEN, Xuguang YANG, Zhenyu WANG, Xiaoming YUE. Experimental study on EDM of CFRP in aerosol medium [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 430886-430886. |
| [7] | Yong WANG, Pan ZHANG, Zibin ZHONG, Kai ZHONG, Zhongwei LI. 3D inspection of chemical milling contour for aircraft thin-walled parts based on point cloud dimensionality reduction [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 430718-430718. |
| [8] | Xu ZENG, Deshuang DENG, Hongjuan YANG, Zhengyan YANG, Shuyi MA, Lei YANG, Zhanjun WU. Research progress in low-velocity impact monitoring technology for aircraft structures [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 30368-030368. |
| [9] | . Aircraft Assembly Tooling Knowledge Recommendation Approach based on Domain Knowledge Graph and User Behavior Feedback [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 1-0. |
| [10] | Jinyue LI, Pengfei ZHANG, Yuecheng GUO, Maocheng XU, Gang ZHAO. Assembly analysis of aero-engine mating interface based on digital twin [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 629800-629800. |
| [11] | Zesheng WANG, Hui WANG, Pengfei ZHANG, Lifeng DU, Hongqiang BAO, Dong LIN. Precision stacking assembly of aero-engine rotor driven by digital twin [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 629759-629759. |
| [12] | . A Review of Advances in Aviation Predictive Maintenance Research [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
| [13] | Minghui HU, Shaopeng LIU, Hao WANG, Chenyang LI, Weimin WANG, Zhinong JIANG. Characterization and identification of gas turbine blade fracture faults based on broadband vibration [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 230098-230098. |
| [14] | . Integrated mechanism and generative adversarial surrogate modeling for aircraft systems reliability evaluation [J]. Acta Aeronautica et Astronautica Sinica, 0, (): 0-0. |
| [15] | Zeyu SONG, Junpeng XUE, Zhichao XU, Wenbo LU, Min WANG, Ran JIA, Changzhi YU. Three-dimensional measurement method of geometric morphology in laser metal deposition forming process using ultraviolet structured light [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 429722-429722. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

