Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (10): 31178.doi: 10.7527/S1000-6893.2024.31178
• Reviews •
Fang ZHOU1, Qingyong WANG1, Yuqi QIN1, Botao ZHANG2, Yangang WANG1(
)
Received:2024-09-10
Revised:2024-10-15
Accepted:2024-12-05
Online:2024-12-18
Published:2024-12-18
Contact:
Yangang WANG
E-mail:wyg704@nwpu.edu.cn
Supported by:CLC Number:
Fang ZHOU, Qingyong WANG, Yuqi QIN, Botao ZHANG, Yangang WANG. Review and progress of research on blade source term model[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(10): 31178.
Table 4
Summary of blade source models based on body force model
| 方法 | 优点 | 缺点 | 应用对象 | 适用性 |
|---|---|---|---|---|
| Gong模型[ | 计算成本较低、 建模复杂程度较低 | 未考虑叶片阻塞效应、数值稳定性问题、繁琐的校准工作 | 低速压气机、 风扇 | 低速来流、轻/中/重载荷、 进气畸变 |
| Gong-Thollet模型[ | 考虑叶片阻塞与压缩性修正、简化的校准流程 | 低速/跨声速压 气机、风扇 | 低速来流、轻/中/重载荷、 进气畸变 | |
| Hall模型[ | 无需进行校准、 建模复杂程度较低 | 未考虑叶片阻塞效应以及 压缩性修正 | 低速压气机、 风扇 | 低速来流、轻/中/重载荷、 边界层吸入 |
| Hall-Thollet模型[ | 考虑叶片阻塞与压缩性修正 | 低速/跨声速压 气机、风扇 | 低速/跨声速来流、轻/中/重载荷、风扇/压气机设计与优化,进气畸变 | |
TEACC 模型[ | 计算效率高、 建模复杂程度较低 | 源项与来流参数关联程度低 | 低速压气机、 风扇 | 低速来流、轻/中/重载荷、 进气畸变 |
Kiwada 模型[ | 计算准确度较高 | 建模复杂程度较高、 无法处理复杂来流工况 | 低速压气机、 风扇 | 低速来流、轻/中/重载荷、 进气畸变 |
| Chima模型[ | 计算准确度高、 可以处理激波间断、 适用于复杂来流工况 | 建模复杂程度高、 先决计算成本高、 计算效率低 | 高速/低速压气 机、风扇 | 高速/低速来流、轻/中/ 重载荷、进气畸变 |
| 1 | NASA. Strategic implementation plan: 2017 update[R]. Washington, D.C.: NASA, 2017. |
| 2 | KIM H D, PERRY A T, ANSELL P J. A review of distributed electric propulsion concepts for air vehicle technology[C]∥2018 AIAA/IEEE Electric Aircraft Technologies Symposium (EATS). Piscataway: IEEE Press, 2018: 1-21. |
| 3 | 达兴亚, 范召林, 熊能, 等. 分布式边界层吸入推进系统的建模与分析[J]. 航空学报, 2018, 39(7): 122048. |
| DA X Y, FAN Z L, XIONG N, et al. Modeling and analysis of distributed boundary layer ingesting propulsion system[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7): 122048 (in Chinese). | |
| 4 | 张阳, 周洲, 郭佳豪. 分布式涵道风扇喷流对后置机翼的气动性能影响[J]. 航空学报, 2021, 42(9): 224977. |
| ZHANG Y, ZHOU Z, GUO J H. Effects of distributed electric propulsion jet on aerodynamic performance of rear wing[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 224977 (in Chinese). | |
| 5 | GOHARDANI A S, DOULGERIS G, SINGH R. Challenges of future aircraft propulsion: A review of distributed propulsion technology and its potential application for the all electric commercial aircraft[J]. Progress in Aerospace Sciences, 2011, 47(5): 369-391. |
| 6 | 黄俊. 分布式电推进飞机设计技术综述[J]. 航空学报, 2021, 42(3): 624037. |
| HUANG J. Survey on design technology of distributed electric propulsion aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(3): 624037 (in Chinese). | |
| 7 | SCHILTGEN B T, FREEMAN J. Aeropropulsive interaction and thermal system integration within the ECO-150: a turboelectric distributed propulsion airliner with conventional electric machines[C]∥16th AIAA Aviation Technology, Integration, and Operations Conference. Reston: AIAA, 2016. |
| 8 | ZACHARIADIS A, HALL C A. Application of a navier-stokes solver to the study of open rotor aerodynamics[J]. Journal of Turbomachinery, 2011, 133(3): 031025. |
| 9 | SATO S, SPOTTS N, GAO X F. Validation of fan source term model constructed without blade geometry[C]∥AIAA SciTech 2019 Forum. Reston: AIAA, 2019. |
| 10 | JOO W G, HYNES T P. The simulation of turbomachinery blade rows in asymmetric flow using actuator disks[J]. Journal of Turbomachinery, 1997, 119(4): 723-732. |
| 11 | RANKINE W M J. On the mechanical principles of the action of propellers[J]. Transactions of the Institute of Naval Architects, 1865, 6: 13-39. |
| 12 | FROUDE R E. On the part played in propulsion by differences of fluid pressure [J]. Transactions of the Institute of Naval Architects, 1889, 30: 390-405. |
| 13 | BETZ A. Eine erweiterung der schraubenstrahl theorie [J]. Zeitschrift für Flugtechnik und Motorluftschiffahrt, 1920, 11: 105-110. |
| 14 | GLAUERT H. Airplane propellers[M]∥Aerodynamic Theory. Berlin, Heidelberg: Springer, 1935: 169-360. |
| 15 | LI S L, LIU C G, CHU X M, et al. Ship maneuverability modeling and numerical prediction using CFD with body force propeller[J]. Ocean Engineering, 2022, 264: 112454. |
| 16 | CAI B A, MAO X F, XU Q, et al. Simulation of the interaction between ship and ducted propeller with a modified body force method[J]. Ocean Engineering, 2022, 249: 110950. |
| 17 | WANG H T, XIANG X B, XIANG G, et al. An improved body force method for simulation of self-propulsion AUV with ducted propeller[J]. Ocean Engineering, 2023, 281: 114731. |
| 18 | JIN Z H, WANG P, DONG H C, et al. Numerical prediction of ducted propeller performance based on a BEM-RANS coupling method[J]. Ocean Engineering, 2023, 271: 113761. |
| 19 | 朱翀. 风力机尾流流场的数值模拟[D]. 南京: 南京航空航天大学, 2012. |
| ZHU C. Numerical simulation of wind turbine wake flow field[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012 (in Chinese). | |
| 20 | 段旭鹏, 孙卫平, 魏猛, 等. 基于OpenFOAM的水陆两栖飞机水面高速滑行研究[J]. 航空学报, 2019, 40(1): 522330. |
| DUAN X P, SUN W P, WEI M, et al. Numerical simulation of amphibious aircraft taxiing at high speed on water using OpenFOAM[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1): 522330 (in Chinese). | |
| 21 | FU H, MICHAEL T J, CARRICA P M. A method to perform self-propulsion computations with a simplified body-force propeller model[C]∥Proceedings of the Twenty-Fifth International Ocean and Polar Engineering Conference, 2015: 968-988. |
| 22 | KINACI O K, DELEN C, BITIRGEN R, et al. Free-running tests for DTC self-propulsion─An investigation of lateral forces due to the rudder and the propeller[J]. Applied Ocean Research, 2021, 116: 102877. |
| 23 | MARBLE F E. Three-dimensional flow in turbomachines, aerodynamics of turbines and compressors [M]. Princeton: Princeton University Press, 1964, 83-166. |
| 24 | 杨晨. 燃气轮机整机通流模型及其模拟技术研究[D]. 西安: 西北工业大学, 2020. |
| YANG C. Research on throughflow model and simulation methodology for full gas turbine engines[D]. Xi’an: Northwestern Polytechnical University, 2020 (in Chinese). | |
| 25 | HE C, MA Y F, LIU X H, et al. Aerodynamic instabilities of swept airfoil design in transonic axial-flow compressors[J]. AIAA Journal, 2018, 56(5): 1878-1893. |
| 26 | SUN X F, LIU X H, HOU R W, et al. A general theory of flow-instability inception in turbomachinery[J]. AIAA Journal, 2013, 51(7): 1675-1687. |
| 27 | 屠宝锋. 风扇/压气机动态失速过程和多尺度非定常气动稳定性研究[D]. 南京: 南京航空航天大学, 2009. |
| TU B F. Dynamic stall inception and multi-scale unsteady aerodynamic stability investigation of fan/compressor[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2009 (in Chinese). | |
| 28 | GONG Y F, TAN C S, GORDON K A, et al. A computational model for short-wavelength stall inception and development in multistage compressors[J]. Journal of Turbomachinery, 1999, 121(4): 726-734. |
| 29 | HALE A, O’BRIEN W. A three-dimensional Turbine Engine Analysis Compressor Code (TEACC) for steady-state inlet distortion[J]. Journal of Turbomachinery, 1998, 120(3): 422-430. |
| 30 | GONG Y F. A computational model for rotating stall and inlet distortions in multistage compressors[D]. Cambridge: Massachusetts Institute of Technology, 1999. |
| 31 | CHIMA R V. A three-dimensional unsteady CFD model of compressor stability[C]∥Proceedings of the ASME Turbo Expo 2006: Power for Land, Sea, and Air. New York: ASME, 2008: 1157-1168. |
| 32 | KIWADA G. Development of a body force description for compressor stability assessment[D]. Cambridge: Massachusetts Institute of Technology, 2008: 20-40. |
| 33 | HOUGH G, ORDWAY D. The generalized actuator disk[C]∥Second Southeastern Conference on Theoretical and Applied Mechanics, 1964: 1-36. |
| 34 | REISSNER H. On the vortex theory of the screw propeller[J]. Journal of the Aeronautical Sciences, 1937, 5(1): 1-7. |
| 35 | ZHANG Z R. Verification and validation for RANS simulation of KCS container ship without/with propeller[J]. Journal of Hydrodynamics, Ser B, 2010, 22(5): 889-896. |
| 36 | 吴召华, 陈作钢, 代燚. 基于体积力法的船体自航性能数值预报[J]. 上海交通大学学报, 2013, 47(6): 943-949. |
| WU Z H, CHEN Z G, DAI Y. Numerical prediction of self-propulsion with a body-force propeller model[J]. Journal of Shanghai Jiao Tong University, 2013, 47(6): 943-949 (in Chinese). | |
| 37 | LEE S H, PAIK K J, HWANG H S, et al. A study on ship performance in waves using a RANS solver, part 1: Comparison of power prediction methods in regular waves[J]. Ocean Engineering, 2021, 227: 108900. |
| 38 | ORTOLANI F, DUBBIOSO G. Experimental investigation of blade and propeller loads: Steady turning motion[J]. Applied Ocean Research, 2019, 91: 101874. |
| 39 | LIU H R, ZHAO X Y, ZHOU F, et al. Aero-propulsion analysis of distributed ducted-fan propulsion based on lifting-line driven body-force model[J]. Chinese Journal of Aeronautics, 2024, 38(2): 103126. |
| 40 | YU J W, YAO C B, LIU L W, et al. Assessment of full-scale KCS free running simulation with body-force models[J]. Ocean Engineering, 2021, 237: 109570. |
| 41 | VILLA D, VIVIANI M, TANI G, et al. Numerical evaluation of rudder performance behind a propeller in bollard pull condition[J]. Journal of Marine Science and Application, 2018, 17(2): 153-164. |
| 42 | VILLA D, FRANCESCHI A, VIVIANI M. Numerical analysis of the rudder-propeller interaction[J]. Journal of Marine Science and Engineering, 2020, 8(12): 990. |
| 43 | STERN F, KIM H T, PATEL V C, et al. A viscous-flow approach to the computation of propeller-hull interaction[J]. Journal of Ship Research, 1988, 32(4): 246-262. |
| 44 | KERWIN J, LEE C. Prediction of steady and unsteady marine propeller performance by numerical lifting-surface theory[J]. The Japan Society of Naval Architects and Marine Engineers, 1978, 86: 1-30. |
| 45 | GUO C Y, WANG X, WANG C H, et al. Research on calculation methods of ship model self-propulsion prediction[J]. Ocean Engineering, 2020, 203: 107232. |
| 46 | ZHANG D H. A method for computing stern flows with an operating propeller[J]. Royal Institute of Naval Architects Transactions, 1992, 134: 235-250. |
| 47 | LEE S K, CHEN H C. A coupled RANS/VLM approach for multi-component propulsor analysis[C]∥SNAME 10th Propeller and Shafting Symposium, 2003: 85-103. |
| 48 | SIMONSEN C, STERN F. RANS maneuvering simulation of Esso Osaka with rudder and a body-force propeller[J]. Journal of Ship Research, 2017, 49(2): 98-120. |
| 49 | VILLA D, GAGGERO S, BRIZZOLARA S. Ship self propulsion with different CFD methods: From actuator disk to viscous inviscid unsteady coupled solvers[C]∥10th International Conference on Hydrodynamics, 2012: 1-9. |
| 50 | GAGGERO S, VILLA D, VIVIANI M. An extensive analysis of numerical ship self-propulsion prediction via a coupled BEM/RANS approach[J]. Applied Ocean Research, 2017, 66: 55-78. |
| 51 | RAJAGOPALAN R. Three dimensional analysis of a rotor in forward flight[C]∥20th Fluid Dynamics, Plasma Dynamics and Lasers Conference. Reston: AIAA, 1989. |
| 52 | BERGMANN O, GÖTTEN F, BRAUN C, et al. Comparison and evaluation of blade element methods against RANS simulations and test data[J]. CEAS Aeronautical Journal, 2022, 13(2): 535-557. |
| 53 | BENINI E. Significance of blade element theory in performance prediction of marine propellers[J]. Ocean Engineering, 2004, 31(8-9): 957-974. |
| 54 | ROSEN A, GUR O. Novel approach to axisymmetric actuator disk modeling[J]. AIAA Journal, 2008, 46(11): 2914-2925. |
| 55 | BONTEMPO R, MANNA M. Analysis and evaluation of the momentum theory errors as applied to propellers[J]. AIAA Journal, 2016, 54(12): 3840-3848. |
| 56 | SPINNER S, TROST M, SCHNELL R. An overview of high fidelity CFD engine modeling[C]∥AIAA SciTech 2022 Forum. Reston: AIAA, 2022. |
| 57 | SPINNER S, KELLER D, SCHNELL R, et al. A blade element theory based actuator disk methodology for modeling of fan engines in RANS simulations[C]∥AIAA Aviation 2020 Forum. Reston: AIAA, 2020. |
| 58 | FENG D K, YU J W, HE R, et al. Improved body force propulsion model for ship propeller simulation[J]. Applied Ocean Research, 2020, 104: 102328. |
| 59 | TOKGOZ E, KURODA K, WIN Y N, et al. A new method to predict the propeller body-force distribution for modeling the propeller in viscous CFD code without potential flow code[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2014, 19: 1-7. |
| 60 | WIN Y N, TOKGOZ E, WU P C, et al. Computation of propeller-hull interaction using simple body-force distribution model around series 60 CB = 0.6[J]. Journal of the Japan Society of Naval Architects and Ocean Engineers, 2013, 18: 17-27. |
| 61 | WINDEN B, KAWAMURA T, HUANG Z. Comparative self propulsion simulations of the JBC bulk carrier[C]∥Proceedings of the Japan Society of Naval Architects and Ocean Engineers, 2015: 239-242. |
| 62 | LI Z H, YU J W, FENG D K, et al. Research on the improved body-force method based on viscous flow[C]∥ASME 2019 38th International Conference on Ocean, Offshore and Arctic Engineering. New York: ASME, 2019. |
| 63 | PRANDTL L, BETZ A. Vier abhandlungen zur hydrodynamik und aerodynamik[M]. Göttingen: Göttingen University Press, 1927: 88-92. |
| 64 | WILSON R E, LISSAMAN P B S. Applied aerodynamics of wind power machines, national technical information service: PB-238595[R]. Eugene: University of Oregon, 1974. |
| 65 | WILSON R E, LISSAMAN P B S, WALKER S N, Aerodynamic performance of wind turbines: PB-259089[R]. Eugene: University of Oregon, 1976. |
| 66 | SHEN W Z, MIKKELSEN R, SØRENSEN J N, et al. Tip loss corrections for wind turbine computations[J]. Wind Energy, 2005, 8(4): 457-475. |
| 67 | SHEN W Z, SØRENSEN J N, MIKKELSEN R. Tip loss correction for actuator/Navier-Stokes computations [J]. Journal of Solar Energy Engineering, 2005, 127(1): 209-213. |
| 68 | PANTEL H, FALISSARD F, DUFOUR G. Assessment of Reynolds-averaged Navier-Stokes/blade element theory body force method for propeller modeling[J]. AIAA Journal, 2024, 62(2): 758-775. |
| 69 | ZHONG W, WANG T G, ZHU W J, et al. Evaluation of tip loss corrections to AD/NS simulations of wind turbine aerodynamic performance[J]. Applied Sciences, 2019, 9(22): 4919. |
| 70 | SØRENSEN J N, MYKEN A. Unsteady actuator disc model for horizontal axis wind turbines[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1992, 39(1-3): 139-149. |
| 71 | WANG M Z, WAN D C, WANG J H. An improved BEMT model based on agent actuating disk with application to ship self-propulsion simulation[J]. Ocean Engineering, 2022, 266: 112787. |
| 72 | SØRENSEN J N, SHEN W Z, MUNDUATE X. Analysis of wake states by a full-field actuator disc model[J]. Wind Energy, 1998, 1(2): 73-88. |
| 73 | MARTINEZ L, LEONARDI S, CHURCHFIELD M, et al. A comparison of actuator disk and actuator line wind turbine models and best practices for their use[C]∥50th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2012. |
| 74 | STOKKERMANS T C A, VAN ARNHEM N, SINNIGE T, et al. Validation and comparison of RANS propeller modeling methods for tip-mounted applications[J]. AIAA Journal, 2019, 57(2): 566-580. |
| 75 | ORTUN B. A coupled RANS/Lifting-Line analysis for modelling the aerodynamics of distributed propulsion [C]∥AHS Technical Conference on Aeromechanics Design for Transformative Vertical Flight, 2018: 1-8. |
| 76 | PETERS A. Ultra-short nacelles for low fan pressure ratio propulsors[D]. Cambridge: Massachusetts Institute of Technology, 2014. |
| 77 | HALL D K, GREITZER E M, TAN C S. Analysis of fan stage conceptual design attributes for boundary layer ingestion[J]. Journal of Turbomachinery, 2017, 139(7): 071012. |
| 78 | DAY I J. Stall inception in axial flow compressors[J]. Journal of Turbomachinery, 1993, 115(1): 1-9. |
| 79 | KOFF S G, GREITZER E M. Axisymmetrically stalled flow performance for multistage axial compressors[J]. Journal of Turbomachinery, 1986, 108(2): 216-223. |
| 80 | XU L. Assessing viscous body forces for unsteady calculations[J]. Journal of Turbomachinery, 2003, 125(3): 425-432. |
| 81 | HSIAO E, NAIMI M, LEWIS J P, et al. Actuator duct model of turbomachinery components for powered-nacelle Navier-Stokes calculations[J]. Journal of Propulsion and Power, 2001, 17(4): 919-927. |
| 82 | DEFOE J, NARKAJ A, SPAKOVSZKY Z. A body-force based methodology for predicting multiple-pure-tone noise: validation[C]∥16th AIAA/CEAS Aeroacoustics Conference. Reston: AIAA, 2010. |
| 83 | 曾翰轩, 范腾博, 温孟阳, 等. 基于三维体积力模型的离心压气机喘振预测方法[J]. 航空动力学报, 2024, 39(2): 182-192. |
| ZENG H X, FAN T B, WEN M Y, et al. Surge prediction of radial compressors based on three-dimensional body-force method[J]. Journal of Aerospace Power, 2024, 39(2): 182-192 (in Chinese). | |
| 84 | ZENG H X, ZHENG X Q, VAHDATI M. A method of stall and surge prediction in axial compressors based on three-dimensional body-force model[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(3): 031021. |
| 85 | SIMON J F. Contribution to through flow modelling for axial flow turbomachines[D]. Liege: University of Liege, 2007. |
| 86 | KOTTAPALLI A P. Development of a body force model for centrifugal compressors[D]. Cambridge: Massachusetts Institute of Technology, 2013. |
| 87 | THOLLET W, DUFOUR G, CARBONNEAU X, et al. Body-force modeling for aerodynamic analysis of air intake–fan interactions[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2016, 26(7): 2048-2065. |
| 88 | THOLLET W, DUFOUR G, CARBONNEAU X, et al. Assessment of body force methodologies for the analysis of intake-fan aerodynamic interactions[C]∥ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition. New York: ASME, 2016. |
| 89 | MAGRINI A. Body force model implementation of transonic rotor for fan/airframe simulations[J]. Aerospace, 2022, 9(11): 725. |
| 90 | ANDREA M, ERNESTO B. Study of geometric parameters for the design of short intakes with fan modelling[J]. Chinese Journal of Aeronautics, 2022, 35(11): 18-32. |
| 91 | XIE T B, URANGA A. Development and validation of non-axisymmetric body-force propulsor model[C]∥AIAA Propulsion and Energy 2020 Forum. Reston: AIAA, 2020. |
| 92 | THOLLET W. Body force modeling of fan-airframe interactions[D]. Toulouse: University of Toulouse, 2017. |
| 93 | DOSNE C, BARRIER R, BOURASSEAU S, et al. A first assessment of adjoint body-force modeling capabilities for fan design[C]∥AIAA SciTech 2024 Forum. Reston: AIAA, 2024. |
| 94 | MAGRINI A, BUOSI D, BENINI E. Sensitivity analysis of nacelle intake high-incidence aerodynamics including a body force fan model[C]∥AIAA SciTech 2021 Forum. Reston: AIAA, 2021. |
| 95 | MAGRINI A, BENINI E, BUOSI D. Design of short intakes for ultra-high bypass engines: Preliminary exploration at fixed incidence[C]∥AIAA SciTech 2022 Forum. Reston: AIAA, 2022. |
| 96 | MAGRINI A, BUOSI D, BENINI E. Assessment of engine modelling on the installed aerodynamics of an ultra-high bypass turbofan[C]∥AIAA SciTech 2022 Forum. Reston: AIAA, 2022. |
| 97 | HALE A L, CHALK J, KLEPPER J, et al. Turbine engine analysis compressor code-TEACC. II-Multi-stage compressors and inlet distortion[C]∥17th Applied Aerodynamics Conference. Reston: AIAA, 1999. |
| 98 | HALE A L, DAVIS M, SIRBAUGH J. A numerical simulation capability for analysis of aircraft inlet-engine compatibility[J]. Journal of Engineering for Gas Turbines and Power, 2006, 128(3): 473-481. |
| 99 | 郭晋, 胡骏, 屠宝锋. 多级轴流压气机彻体力模型: 理论方法及简化应用[J]. 航空动力学报, 2018, 33(8): 1954-1963. |
| GUO J, HU J, TU B F. Body force model for multistage axial compressor: Theoretical method and simplified application[J]. Journal of Aerospace Power, 2018, 33(8): 1954-1963 (in Chinese). | |
| 100 | 尹超, 胡骏, 郭晋, 等. 进气畸变对压气机性能影响的三维彻体力模型[J]. 航空动力学报, 2015, 30(9): 2241-2250. |
| YIN C, HU J, GUO J, et al. Three-dimensional body-force model for effect on compressor performance of inlet distortion[J]. Journal of Aerospace Power, 2015, 30(9): 2241-2250 (in Chinese). | |
| 101 | 郭晋. 多级轴流压气机非设计状态性能及稳定性三维计算模型研究[D]. 南京: 南京航空航天大学, 2019. |
| GUO J. Three-dimensional computational model investigation on performance and stability of multistage axial flow compressors in off-design state[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese). | |
| 102 | 周游天, 李军, 彭生红, 等. 插板进气畸变与压气机的耦合数值模拟[J]. 航空动力学报, 2017, 32(3): 568-576. |
| ZHOU Y T, LI J, PENG S H, et al. Numerical simulation of flat baffle inlet distortion coupled with compressor[J]. Journal of Aerospace Power, 2017, 32(3): 568-576 (in Chinese). | |
| 103 | 谢豪, 李军, 周游天, 等. 基于体积力模型的高速压气机仿真研究[J]. 工程热物理学报, 2019, 40(6): 1262-1267. |
| XIE H, LI J, ZHOU Y T, et al. Simulation of high speed compressor based on body-force model[J]. Journal of Engineering Thermophysics, 2019, 40(6): 1262-1267 (in Chinese). | |
| 104 | KERNER J. An assessment of body force representations for compressor stall simulation[D]. Cambridge: Massachusetts Institute of Technology, 2010. |
| 105 | 邱佳慧, 杨晨, 赵红亮, 等. 基于体积力模型的跨声压气机进气畸变数值模拟[J]. 航空动力学报, 2024, 39(8): 447-457. |
| QIU J H, YANG C, ZHAO H L, et al. Numerical simulation of transonic compressor with inlet distortion based on body-force model[J]. Journal of Aerospace Power, 2024, 39(8): 447-457 (in Chinese). | |
| 106 | 杨阳. 压气机三维粘性彻体力稳定性分析模型及应用研究[D]. 西安: 西北工业大学, 2016. |
| YANG Y. Investigation on three-dimensional viscous bulk body force model and its application[D]. Xi’an: Northwestern Polytechnical University, 2016 (in Chinese). | |
| 107 | 安玉戈, 刘火星. 压气机进气畸变数值模拟技术研究[J]. 航空学报, 2012, 33(9): 1624-1632. |
| AN Y G, LIU H X. Numerical simulation of compressor with inlet distortion[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9): 1624-1632 (in Chinese). | |
| 108 | QIU J H, YANG C, ZHANG W Q, et al. Body-force modeling considering induced upstream effects for a transonic compressor with total temperature distortion[J]. Chinese Journal of Aeronautics, 2024, 37(6): 7-19. |
| 109 | 万科, 朱芳, 金东海, 等. 周向平均方法在某风扇/增压级分析中的应用[J]. 航空学报, 2014, 35(1): 132-140. |
| WAN K, ZHU F, JIN D H, et al. Application of circumferentially averaged method in fan/booster[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 132-140 (in Chinese). | |
| 110 | 金东海, 梁栋, 刘晓恒, 等. 航空发动机整机周向平均稳态仿真方法[J]. 航空动力学报, 2022, 37(11): 2598-2616. |
| JIN D H, LIANG D, LIU X H, et al. Steady state simulation method of whole aero-engine based on circumferentially averaged method[J]. Journal of Aerospace Power, 2022, 37(11): 2598-2616 (in Chinese). |
| [1] | Kelei WANG, Zhou ZHOU, Minghao LI. Research and experimental validation of loose coupling design method for propulsion wing unit [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 212-229. |
| [2] | Dongfei ZHANG, Junhui GAO. Application of GPU⁃accelerated high⁃order spectral difference method in fan noise [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128941-128941. |
| [3] | Qingfeng ZHAO, Zhou ZHOU, Minghao LI, De XU. Propulsion/aerodynamic coupling modeling for distributed-propulsion-wing with induced wing configuration [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129252-129252. |
| [4] | Hanru LIU, Nanshu CHEN, Yu LIU, Zhijie HU. Review of porous media used in flow control and aerodynamic noise reduction [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 27923-027923. |
| [5] | GUI Xingmin, JIN Donghai, ZHANG Jiancheng, SONG Manxiang, ZHAO Yang, HU Daquan. Flow mechanism of bowed and swept blades with consideration of circumferential fluctuation source term before blade leading edge [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527371-527371. |
| [6] | ZHANG Wanfu, WANG Yingfei, ZHANG Xiaobin, YANG Xingchen, LI Chun. Experimental identification for rotordynamic coefficients of labyrinth seal based on impedance method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(1): 424719-424719. |
| [7] | LIU Xiaoheng, ZHOU Chenghua, SONG Manxiang, JIN Donghai, GUI Xingmin. Overall simulation of a turbojet engine based on throughflow method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(1): 123199-123199. |
| [8] | DUAN Xupeng, SUN Weiping, WEI Meng, YANG Yong. Numerical simulation of amphibious aircraft taxiing at high speed on water using OpenFOAM [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2019, 40(1): 522330-522330. |
| [9] | XU Jianhua, LI Kai, SONG Wenping, YANG Xudong. Influence of co-flow jet key parameters on airfoil aerodynamic performance at low Reynolds number [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(8): 122018-122018. |
| [10] | DA Xingya, FAN Zhaolin, XIONG Neng, WU Junqiang, ZHAO Zhongliang. Modeling and analysis of distributed boundary layer ingesting propulsion system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(7): 122048-122048. |
| [11] | SU Dacheng, SHI Yongjie, XU Guohua, ZONG Kun. Numerical simulatin of coupled flow field of helicopter/ship [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(7): 520853-520853. |
| [12] | ZHOU Yu, CHEN Silian, DU Farong, DING Shuiting. Automatic extraction algorithm of parameterized streamlines from a radial-inflow turbomachinery ruled blade [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(5): 420592-420592. |
| [13] | XU Kunbo, QIAO Weiyang, CHANG Xinyue, YIN Tao, HUO Shiyu. Fan broadband noise based on combined sensor array method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(12): 121324-121324. |
| [14] | XU Kunbo, QIAO Weiyang, HUO Shiyu, CHENG Haoyi, TONG Fan. Experimental of fan broadband noise determination based on rotating axial arrays [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(11): 121132-121132. |
| [15] | XU Kunbo, QIAO Weiyang, WANG Liangfeng, TONG Fan. Experimental research of broadband sound power determination in axial fan [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(9): 2939-2946. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

