Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (8): 31083.doi: 10.7527/S1000-6893.2024.31083
• Reviews •
Baoshi YU1,2, Yongjun LEI1,2,3, Zhibin SHEN1,2, Dapeng ZHANG1,2()
Received:
2024-08-20
Revised:
2024-09-18
Accepted:
2024-10-14
Online:
2024-10-16
Published:
2024-10-15
Contact:
Dapeng ZHANG
E-mail:zhangdapeng@nudt.edu.cn
Supported by:
CLC Number:
Baoshi YU, Yongjun LEI, Zhibin SHEN, Dapeng ZHANG. Review on analysis and control technology of curing residual stress in solid motor propellants[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(8): 31083.
Table 1
Research progress of CRS simulation prediction method for SRM
研究方法 | 优点 | 缺点 | 参考文献 |
---|---|---|---|
等效零应力温度的热力耦合有限元模型 | 模型简单,无需测定推进剂固化相关的物性参数 | 无法反映装药CRS的形成历程,存在一定的等效折算误差 | [ |
固化度相关的弹性-黏弹性分段拼接有限元模型 | 需要试验测量的材料物性参数较少,适用于工程近似计算 | 未考虑固化阶段推进剂的黏弹性效应 | [ |
固化度相关的固化-降温一体化有限元模型 | 可适用于整个固化过程,考虑了推进剂黏弹性力学参数随固化度的变化 | 不能精准计算固化反应的推进剂的体积收缩与反应放热,需开展一定的材料物性参数测定试验 | [ |
热-化-力耦合有限元模型 | 可反映不同推进剂固化反应体积收缩率差异 | 严重依赖材料物性参数测定试验 | [ |
1 | LIU X Y, XIE X Y, ZHOU D M, et al. Numerical analysis of curing residual stress and strain in NEPE propellant grain[J]. Polymers, 2023, 15(4): 1019. |
2 | 洪东, 鲍福廷, 郭颜红, 等. 固化降温工艺对固体发动机药柱温度场和结构完整性的影响[J]. 固体火箭技术, 2023, 46(5): 755-762. |
HONG D, BAO F T, GUO Y H, et al. Influence of cooling process during curing on temperature field and structural integrity of SRM grain[J]. Journal of Solid Rocket Technology, 2023, 46(5): 755-762 (in Chinese). | |
3 | 周东谟, 谢旭源, 王瑞民, 等. NEPE推进剂固化降温过程残余应力应变分析[J]. 含能材料, 2024, 32(2): 193-203. |
ZHOU D M, XIE X Y, WANG R M, et al. Residual stress/strain analysis of NEPE propellant under curing and cooling[J]. Chinese Journal of Energetic Materials, 2024, 32(2): 193-203 (in Chinese). | |
4 | 侯晓, 张旭, 刘向阳, 等. 固体火箭发动机药柱结构完整性研究进展[J]. 宇航学报, 2023, 44(4): 566-579. |
HOU X, ZHANG X, LIU X Y, et al. Research progress on structural integrity of solid rocket motor grain[J]. Journal of Astronautics, 2023, 44(4): 566-579 (in Chinese). | |
5 | WANG J X, QIANG H F, WANG Z J. Strength criterion of HTPB composite solid propellant under tension-shear loading at low temperature[J]. Propellants, Explosives, Pyrotechnics, 2022, 47(5): e202100267. |
6 | 周东谟, 王辉, 惠步青, 等. 基于梯度有限元法的HTPB推进剂药柱结构完整性分析[J]. 固体火箭技术, 2023, 46(5): 695-707. |
ZHOU D M, WANG H, XI B Q, et al. Structural integrity analysis of HTPB propellant grain based on gradient finite element method[J]. Journal of Solid Rocket Technology, 2023, 46(5): 695-707 (in Chinese). | |
7 | LI Y Q, LI G C, KONG L Z, et al. Experimental measurement and molecular dynamics simulation analysis of thermal aging performance in composite solid propellants[J]. Polymer Degradation and Stability, 2024, 225: 110812. |
8 | BLANCO S, YOU H, KEREKES T W, et al. Cure-induced residual stress buildup and distortions of CFRP laminates with stochastic thermo-chemical and viscoelastic models: Experimental verifications[J]. Mechanics of Advanced Materials and Structures, 2022, 29(19): 2740-2756. |
9 | LIU X D, GUAN Z D, WANG X D, et al. Study on cure-induced residual stresses and spring-in deformation of L-shaped composite laminates using a simplified constitutive model considering stress relaxation[J]. Composite Structures, 2021, 272: 114203. |
10 | DANZI F, FANTERIA D, PANETTIERI E, et al. A numerical micro-mechanical study on damage induced by the curing process in carbon/epoxy unidirectional material[J]. Composite Structures, 2019, 210: 755-766. |
11 | 薛景, 王晓洁, 王喜占, 等. 碳纤维增强树脂基复合材料固化残余应力评估方法研究现状[J]. 固体火箭技术, 2023, 46(2): 253-262. |
XUE J, WANG X J, WANG X Z, et al. Research status of evaluation methods for curing residual stress of carbon fiber reinforced resin matrix composites[J]. Journal of Solid Rocket Technology, 2023, 46(2): 253-262 (in Chinese). | |
12 | BEAUMONT P W R, SOUTIS C, HODZIE A. Structural integrity and durability of advanced composites [M]. Amsterdam :Elsevier, 2015: 43-72. |
13 | FAVRE J P. Residual thermal stresses in fiber reinforced composite materials-A review [J]. Journal of the Mechanical Behavior of Materials, 1988, 1(4): 37-53. |
14 | CHEN A Y, BAEHR S, TURNER A, et al. Carbon-fiber reinforced polymer composites: A comparison of manufacturing methods on mechanical properties[J]. International Journal of Lightweight Materials and Manufacture, 2021, 4(4): 468-479. |
15 | TWIGG G, POURSARTIP A, FERNLUND G. Tool-part interaction in composites processing. Part I: Experimental investigation and analytical model[J]. Composites Part A: Applied Science and Manufacturing, 2004, 35(1): 121-133. |
16 | PARLEVLIET P P, BERSEE H E N, BEUKERS A. Residual stresses in thermoplastic composites-A study of the literature-part I: Formation of residual stresses[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(11): 1847-1857. |
17 | 刘世俭, 王艳茹. 固体火箭发动机药柱固化收缩应力分析[C]∥全国固体火箭发动机设计技术学术交流会, 2000: 325-329. |
LIU S Z, WANG Y R. Analysis of curing shrinkage stress of solid rocket motor [C]∥China Solid Rocket Motor Design Technology Academic Exchange Conference, 2000: 325-329 (in Chinese). | |
18 | 郑启龙. 叠氮类粘合剂环氧固化体系及其在火药中的应用研究[D]. 南京: 南京理工大学, 2017. |
ZHENG Q L. Study on epoxy curing system of azide binder and its application in gunpowder[D].Nanjing: Nanjing University of Science and Technology, 2017 (in Chinese). | |
19 | 王瑞民. 高能固体推进剂固化过程数值模拟研究[D]. 太原: 中北大学, 2023. |
WANG R M. Numerical simulation study on curing process of high energy solid propellant[D].Taiyuan: North University of China, 2023 (in Chinese). | |
20 | 丁安心, 李书欣, 倪爱清, 等. 热固性树脂基复合材料固化变形和残余应力数值模拟研究综述[J]. 复合材料学报, 2017, 34(3): 471-485. |
DING A X, LI S X, NI A Q, et al. A review of numerical simulation of cure-induced distortions and residual stresses in thermoset composites [J]. Acta Materiae Compositae Sinica, 2017, 34(3): 471-485 (in Chinese). | |
21 | 乔巍, 姚卫星, 马铭泽. 复合材料残余应力和固化变形数值模拟及本构模型评价[J]. 材料导报, 2019, 33(24): 4193-4198. |
QIAO W, YAO W X, MA M Z. Numerical simulation and constitutive models evaluation of residual stresses and process-induced deformations of composite structures[J]. Materials Reports, 2019, 33(24): 4193-4198 (in Chinese). | |
22 | 李晔鑫, 职世君, 王虎干, 等. 低温点火条件下发动机装药结构完整性分析及验证[J]. 航空兵器, 2021, 28(4): 82-87. |
LI Y X, ZHI S J, WANG H G, et al. Structural integrity analysis and experiment of motor grain under low temperature ignition[J]. Aero Weaponry, 2021, 28(4): 82-87 (in Chinese). | |
23 | 崔占鑫. 复合固体推进剂加压固化粘弹性本构模型及其应用[D]. 长沙: 国防科技大学, 2021. |
CUI Z X. Viscoelastic constitutive model of composite solid propellant under pressure curing and its application[D]. Changsha: National University of Defense Technology, 2021 (in Chinese). | |
24 | 张永侠, 贾小锋, 苏昌银. 固体火箭发动机装药与总装工艺学[M]. 西安: 西北工业大学出版社, 2017. |
ZHANG Y X, JIA X F, SU C Y. Solid rocket motor charging and assembly technology[M]. Xi’an: Northwestern Polytechnical University Press, 2017 (in Chinese). | |
25 | 乌岳, 李卓, 鲁荣. 固体推进剂花板浇注的数值模拟与实验研究[J]. 火炸药学报, 2018, 41(5): 506-511. |
WU Y, LI Z, LU R. Numerical simulation and experimental study of flower plate pouring system for solid propellant[J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 506-511 (in Chinese). | |
26 | YUE W, ZHUO L, RONG L. Simulation and visual tester verification of solid propellant slurry vacuum plate casting[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(6): 871-879. |
27 | 李大方. 复合固体推进剂加压插管浇注的列线图解[J]. 推进技术, 1988(5): 62-65, 80. |
LI D F. The nomogram of pressure offset casting for composite solid propellant [J]. Journal of Propulsion Technology, 1988(5): 62-65, 80 (in Chinese). | |
28 | 朱号锋, 苏昌银, 王秀菊, 等. 小型固体火箭发动机药柱连续浇注工艺技术研究[J]. 固体火箭技术, 2005, 28(2): 130-132, 156. |
ZHU H F, SU C Y, WANG X J, et al. Investigation on continuous-casting technology of propellant for small solid rocket motors[J]. Journal of Solid Rocket Technology, 2005, 28(2): 130-132, 156 (in Chinese). | |
29 | 苏昌银, 姚谦, 史旭辉, 等. 固体发动机捆绑式加压成型装药工艺研究[J]. 固体火箭技术, 2006, 6: 432-434, 450. |
SU C Y, YAO Q, SHI X H, et al. Study on strap-on pressure propellant loading process for solid rocket motor [J]. Journal of Solid Rocket Technology, 2006, 6: 432-434, 450 (in Chinese). | |
30 | 宗陆航, 杜聪, 卢山, 等. 固体火箭发动机药柱加压固化仿真研究[J]. 固体火箭技术, 2015, 38(5): 653-656. |
ZONG L H, DU C, LU S, et al. Simulation on pressure cure of solid rocket motor grain [J]. Journal of Solid Rocket Technology, 2015, 38(5): 653-656 (in Chinese). | |
31 | CHASE C. Pioneers in propulsion-a history of CSD, Pratt & Whitney’s solid rocket company[C]∥46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston: AIAA, 2010. |
32 | LUSHIS D, KIRSCHNER T, PHILLIPS O. Space motor propulsion-A status report[C]∥16th Joint Propulsion Conference. Reston: AIAA, 1980. |
33 | ELLIS R, HAMMOND R N, DONGUY P. Advanced space motor demonstration[J]. Journal of Spacecraft and Rockets, 1980, 19: 60-65. |
34 | JAMES S N. Solid propellant grain structural integrity analysis: SP-8073 [R]. Washington, D.C.: NASA, 1973. |
35 | HUNT D A. Computing pressure cure viscoelastic effects in solid propellants[J]. Journal of Spacecraft and Rockets, 1972, 9(12): 937-938. |
36 | ARAI K J. Research on pressure cure of solid rocket motor (in Japanese) [J]. Industry Powder, 1982, 43(6): 360-367. |
37 | 荒井敬司, 石秀发. 固体火箭发动机加压固化的研究[J]. 固体火箭技术, 1984, 4: 54-62. |
HUANG J J S, SHI X F. Research on pressure curing of solid rocket motor [J]. Journal of Solid Rocket Technology, 1984, 4: 54-62 (in Chinese). | |
38 | 梁党通, 贾小锋, 胡子衍, 等. 固体推进剂药柱加压固化工艺研究[C].∥2017航天先进制造技术国际研讨会论文集, 2017: 344-350. |
LIANG D T, JIA X F, HU Z Y, et al. Research on pressure curing process of solid propellant grain [C] ∥ Proceedings of 2017 International Conference on Aerospace Advanced Manufacturing Technology, 2017: 344-350 (in Chinese). | |
39 | 刘仔, 权恩, 褚佑彪, 等. 固体火箭发动机加压固化理论及仿真研究[J]. 固体火箭技术, 2019, 42(5): 576-579, 596. |
LIU Z, QUAN E, CHU Y B, et al. Theoretical and simulation research on pressure cure of solid rocket motor[J]. Journal of Solid Rocket Technology, 2019, 42(5): 576-579, 596 (in Chinese). | |
40 | 刘凯, 郜婕, 韩翔, 等. 加压固化工艺对药柱结构完整性的影响[J]. 固体火箭技术, 2022, 45(4): 648-652. |
LIU K, GAO J, HAN X, et al. Influence of pressure curing on the integrity of grain structure[J]. Journal of Solid Rocket Technology, 2022, 45(4): 648-652 (in Chinese). | |
41 | 申志彬, 张慧慧, 李海阳, 等. 一种用于固体推进剂浇注生产的温压协同固化方法与装置: CN116927977A[P]. 2023-10-24. |
SHEN Z B, ZHANG H H, LI H Y,et al. A temperature-pressure co-curing method and device for solid propellant casting production: CN116927977A[P]. 2023-10-24 (in Chinese). | |
42 | 仇志艳. 颗粒增强铝基复合材料的组织性能及残余应力检测系统开发[D]. 上海: 上海应用技术大学, 2022. |
QIU Z Y. Development of microstructure, properties and residual stress detection system for particle reinforced aluminum matrix composites[D]. Shanghai: Shanghai Institute of Technology, 2022 (in Chinese). | |
43 | ZHAO Q, CHEN K S, CHEN M Z, et al. Use of plastic correction formula to improve accuracy of welding residual stress test with blind-hole method[J]. Transactions of Tianjin University, 2018, 24(5): 480-488. |
44 | JAVADI Y, NAJAFABADI M A. Comparison between contact and immersion ultrasonic method to evaluate welding residual stresses of dissimilar joints[J]. Materials & Design, 2013, 47: 473-482. |
45 | LODH A, THOOL K, SAMAJDAR I. X-ray diffraction for the determination of residual stress of crystalline material: An overview[J]. Transactions of the Indian Institute of Metals, 2022, 75(4): 983-995. |
46 | SEONG D, AN G, PARK J, et al. Welding residual stress distributions in the thickness direction under constraints using neutron diffraction and contour methods[J]. Metals, 2022, 13(1): 25. |
47 | 邓新, 邱长军. 云纹干涉法测量残余应力的研究现状[J]. 机械工程师, 2022, 2: 78-80. |
DENG X, QIU C J. Research status of residual stress measurement by moire interferometry [J]. Mechanical Engineer, 2022, 2: 78-80 (in Chinese). | |
48 | SHOJAI S, BRÖMER T, GHAFOORI E, et al. Assessment of corrosion fatigue in welded joints using 3D surface scans, digital image correlation, hardness measurements, and residual stress analysis[J]. International Journal of Fatigue, 2023, 176: 107866. |
49 | 陈金根. 固体发动机无损检测新技术评述[J]. 推进技术, 1992, 4: 75-82. |
CHEN J G. A review of new techniques of NDT in solid rocket motor [J]. Journal of Propulsion Technology, 1992, 4: 75-82 (in Chinese). | |
50 | PAN Y, QU W Z, ZHANG S C, et al. A nonlinear ultrasonic method for detection and characterization of dewetting damage in solid propellant[J]. Propellants, Explosives, Pyrotechnics, 2022, 47(10): e202200079. |
51 | 艾春安, 蔡笑风, 李剑, 等. 时间反转的固体火箭发动机干耦合超声检测[J]. 哈尔滨工业大学学报, 2017, 49(2): 145-150. |
AI C A, CAI X F, LI J, et al. Dry-coupled ultrasonic detection of solid rocket motor by time reversal method[J]. Journal of Harbin Institute of Technology, 2017, 49(2): 145-150 (in Chinese). | |
52 | LI B J, LI J. Nondestructive testing technology of solid rocket engine based on acoustics[C]∥2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). Piscataway: IEEE Press, 2022: 1093-1097. |
53 | HUANG L C, LI J, LI B J. Experimental research on ultrasonic A-scan testing technology of composite solid propellant[J]. Journal of Physics: Conference Series, 2022, 2338(1): 012011. |
54 | JOHNSON E C, POLLCHIK J D, ZACHARIUS S L. An ultrasonic testing technique for monitoring the cure and mechanical properties of polymeric materials[M]∥ GREEN R E, KOZACZEK K J, RUUD C O. Nondestructive characterization of materials VI. Boston: Springer, 1994: 45-52. |
55 | 徐春广, 尹鹏, 张文君, 等. 残余应力超声检测方法第五部分: 复合固体推进剂热固性浇注成型: [S]. 北京: 中国兵器工业集团有限公司, 2022. |
XU C G, YIN P, ZHANG W J, et al. Ultrasonic testing methods for residual stress Part 5: Thermosetting casting of composite solid propellants: [S]. Beijing: China North Industries Group Corporation Limited, 2022 (in Chinese). | |
56 | DAI J J, LI T P, XUAN Z L, et al. Automated defect analysis system for industrial computerized tomography images of solid rocket motor grains based on YOLO-V4 model[J]. Electronics, 2022, 11(19): 3215. |
57 | 王守道. X射线法测定药柱的残余应力[J]. 含能材料, 1994, 2(4): 35-39. |
WANG S D. X-ray method of residual stress measurement in explosive charges[J]. Chinese Journal of Energetic Materials, 1994, 2(4): 35-39 (in Chinese). | |
58 | 陈靖华. 塑料粘结炸药药柱残余应力的X射线衍射检测技术及应用[D]. 成都: 四川大学, 2007. |
CHEN J H. X-ray diffraction detection technology and application of residual stress in plastic bonded explosive grain[D]. Chengdu: Sichuan University, 2007 (in Chinese). | |
59 | NIU H Y, SUN W, LI R G, et al. Quantifying the crack-tip residual stress of nickel-based single-crystal alloys at the micron scale by focused ion beam and digital image correlation[J]. Metallurgical and Materials Transactions A, 2023, 54(11): 4215-4221. |
60 | UZUN F, KORSUNSKY A M. Voxel-based full-field eigenstrain reconstruction of residual stresses[J]. Advanced Engineering Materials, 2023, 25(14): 2201502. |
61 | LEIDE A J, HAYNES T A, TZELEPI N, et al. Measurement of residual stresses in surrogate coated nuclear fuel particles using ring-core focussed ion beam digital image correlation[J]. Nuclear Materials and Energy, 2023, 36: 101470. |
62 | 苏昂, 张大鹏, 张文沁, 等. 线黏弹性材料数字图像相关实验教学探索[J]. 力学与实践, 2024, 46(1): 201-207. |
SU A, ZHANG D P, ZHANG W Q, et al. Experimental teaching exploration of linear viscoelastic materials based on digital image correlation[J]. Mechanics in Engineering, 2024, 46(1): 201-207 (in Chinese). | |
63 | 巴德欣, 董永康. 分布式光纤传感技术及其在航空航天领域的应用展望[J]. 宇航学报, 2020, 41(6): 730-738. |
BA D X, DONG Y K. Distributed optical fiber sensor and its potential applications in health monitoring of aerospace structures[J]. Journal of Astronautics, 2020, 41(6): 730-738 (in Chinese). | |
64 | 张松涛, 金东晖, 屈文忠, 等. 基于柔性传感器的固体火箭发动机界面应力监测[J]. 固体火箭技术, 2020, 43(4): 511-517. |
ZHANG S T, JIN D H, QU W Z, et al. Interface stress monitoring of solid rocket motor with embedded flexible sensor[J]. Journal of Solid Rocket Technology, 2020, 43(4): 511-517 (in Chinese). | |
65 | GAO Y, GUO F Y, CAO P, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor[J]. ACS Nano, 2020, 14(3): 3442-3450. |
66 | CHEN M J, AQUINO W, WALSH T F, et al. A generalized stress inversion approach with application to residual stress estimation[J]. Journal of Applied Mechanics, 2020, 87(11): 111007. |
67 | 顾百骏, 陶祥泽, 赵颖涛. 基于弹性理论的残余应力反演和变形计算[J]. 固体力学学报, 2024, 45(2): 188-200. |
GU B J, TAO X Z, ZHAO Y T. Residual stress inversion and deformation calculation based on theory of elasticity[J]. Chinese Journal of Solid Mechanics, 2024, 45(2): 188-200 (in Chinese). | |
68 | HUANG J F, GUO K, LIU X T, et al. Residual stress prediction across dimensions using improved radial basis function based eigenstrain reconstruction[J]. Mechanics of Materials, 2023, 185: 104779. |
69 | MORIN L, BRAHAM C, TAJDARY P, et al. Reconstruction of heterogeneous surface residual-stresses in metallic materials from X-ray diffraction measurements[J]. Mechanics of Materials, 2021, 158: 103882. |
70 | YUAN Z Y, WANG Y J, YANG G G, et al. Evolution of curing residual stresses in composite using multi-scale method[J]. Composites Part B: Engineering, 2018, 155: 49-61. |
71 | HUI X Y, XU Y J, NIU J W, et al. Rapid evaluation and prediction of cure-induced residual stress of composites based on cGAN deep learning model[J]. Composite Structures, 2024, 330: 117827. |
72 | ZHANG W C, XU Y J, HUI X Y, et al. A multi-dwell temperature profile design for the cure of thick CFRP composite laminates[J]. The International Journal of Advanced Manufacturing Technology, 2021, 117(3): 1133-1146. |
73 | TANG W Y, XU Y J, HUI X Y, et al. Multi-objective optimization of curing profile for autoclave processed composites: Simultaneous control of curing time and process-induced defects[J]. Polymers, 2022, 14(14): 2815. |
74 | 简力. 复合固体推进剂药浆真空浇注除气过程仿真及参数优化[D]. 长沙: 国防科技大学, 2019. |
JIAN L. Simulation and parameter optimization of vacuum casting degassing process for composite solid propellant slurry [D]. Changsha: National University of Defense Technology, 2019 (in Chinese). | |
75 | CUI Z X, LI H Y, SHEN Z B, et al. Analysis of load optimization in solid rocket motor propellant grain with pressure cure[J]. International Journal of Aerospace Engineering, 2021, 2021(1): 5026878. |
76 | MIAO Q W, ZHANG H H, SHEN Z B, et al. Multiobjective optimization of stress-release boot of solid rocket motor under vertical storage based on RBF model[J]. International Journal of Aerospace Engineering, 2022, 2022(1): 8475281. |
77 | MOGHIMI RAD H, TAVANGAR ROOSTA S, MOTAMED SHARIATI S H, et al. Numerical simulation of HTPB resin curing process using OpenFOAM and study the effect of different conditions on its curing time[J]. Propellants, Explosives, Pyrotechnics, 2021, 46(9): 1447-1457. |
78 | 叶年辉, 胡少青, 李宏岩, 等. 考虑性能及成本的固体火箭发动机多学科设计优化[J]. 推进技术, 2022, 43(7): 70-79. |
YE N H, HU S Q, LI H Y, et al. Multidisciplinary design optimization for solid rocket motor considering performance and cost[J]. Journal of Propulsion Technology, 2022, 43(7): 70-79 (in Chinese). | |
79 | 李文韬, 何允钦, 李文博, 等. 固体火箭发动机三维装药的逆向设计与形状优化[J]. 航空学报, 2024, 45(11): 529089. |
LI W T, HE Y Q, LI W B, et al. 3D grain reverse design and shape optimization for solid rocket motor[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529089 (in Chinese). | |
80 | KAMRAN A, LIANG G Z. An integrated approach for optimization of solid rocket motor[J]. Aerospace Science and Technology, 2012, 17(1): 50-64. |
81 | 雷勇军, 袁端才, 何煌. 固体发动机星形药柱的形状优化分析[J]. 国防科技大学学报, 2008, 30(4): 6-10. |
LEI Y J, YUAN D C, HE H. The shape optimization analysis of solid motor star grain[J]. Journal of National University of Defense Technology, 2008, 30(4): 6-10 (in Chinese). | |
82 | 彭超. 复杂载荷下固体火箭发动机装药应力释放槽优化设计[D]. 南京: 南京理工大学, 2014. |
PENG C. Optimal design of stress relief groove for solid rocket motor charge under complex load[D].Nanjing: Nanjing University of Science and Technology, 2014 (in Chinese). | |
83 | 王晨飞. 大长径比复杂装药结构完整性分析[D]. 南京: 南京理工大学, 2018. |
WANG C F. Structural integrity analysis of complex charge with large aspect ratio[D]. Nanjing: Nanjing University of Science and Technology, 2018 (in Chinese). | |
84 | YANG H Z, HONG S H, WANG Y. A sequential multi-fidelity surrogate-based optimization methodology based on expected improvement reduction[J]. Structural and Multidisciplinary Optimization, 2022, 65(5): 153. |
85 | YANG J W, WU Z P, WANG W J, et al. A surrogate-based optimization method for mixed-variable aircraft design[J]. Engineering Optimization, 2022, 54(1): 113-133. |
86 | YOO K S, HAN S Y. Modified ant colony optimization for topology optimization of geometrically nonlinear structures[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(4): 679-687. |
87 | NOURI SHIRAZI M R, MOLLAMAHMOUDI H, SEYEDPOOR S M. Structural damage identification using an adaptive multi-stage optimization method based on a modified particle swarm algorithm[J]. Journal of Optimization Theory and Applications, 2014, 160(3): 1009-1019. |
88 | ZHU H, LUO H W, WANG P C, et al. Uncertainty analysis and design optimization of solid rocket motors with finocyl grain[J]. Structural and Multidisciplinary Optimization, 2020, 62(6): 3521-3537. |
89 | AN H C, YOUN B D, KIM H S. Variable-stiffness composite optimization using dynamic and exponential multi-fidelity surrogate models[J]. International Journal of Mechanical Sciences, 2023, 257: 108547. |
90 | HU J X, ZHANG L L, LIN Q, et al. A conservative multi-fidelity surrogate model-based robust optimization method for simulation-based optimization[J]. Structural and Multidisciplinary Optimization, 2021, 64(4): 2525-2551. |
91 | LI K P, LI Q Y, LV L Y, et al. A nonlinearity integrated bi-fidelity surrogate model based on nonlinear mapping[J]. Structural and Multidisciplinary Optimization, 2023, 66(9): 196. |
[1] | Ge WANG, Zhibang WANG, Fuqi WANG, Ben GUAN, Limin WANG, Haoran NING. Numerical study on quasi⁃one⁃dimensional internal ballistics of throttling segregated fuel⁃oxidizer systems [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 129111-129111. |
[2] | Shidi AI, Junwei LI, Zhongliang TIAN, Lei HAN, Ningfei WANG. Solid rocket motor pressure oscillations under lateral composite overloads [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(22): 130233-130233. |
[3] | Wentao LI, Yunqin HE, Wenbo LI, Yiyi ZHANG, Guozhu LIANG. 3D grain reverse design and shape optimization for solid rocket motor [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(11): 529089-529089. |
[4] | Ruyao WANG, Anchen SONG, Limin WANG, Deyou WANG, Junwei LI, Ningfei WANG. Plume velocity characteristics of pintle controlled solid rocket motor based on TDLAS technique [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(17): 128107-128107. |
[5] | Hongjin LI, Junwei LI, Kan XIE, Xiang LI, Zheng YANG, Ningfei WANG. Effect of two-phase flow on performance of plug nozzle in solid rocket motor [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 127890-127890. |
[6] | Jianjun WU, Zejun HU, Zhicheng HE, Yu ZHANG, Yang OU, Zhengxue MA, Qinhui PENG, Yuxuan ZHONG. Research progress of electrically controlled solid propulsion technology [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(15): 528716-528716. |
[7] | SUN Xiasheng, SU Shaopu, SUN Hanbin, DONG Dengke. Current status and prospect of overseas research on aeronautical fatigue [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524791-524791. |
[8] | CUI Degang, BAO Rui, ZHANG Rui, LIU Binchao, OUYANG Tian. Development of aircraft structural fatigue and structural integrity: Review [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(5): 524394-524394. |
[9] | LI Yingkun, HAN Junli, CHEN Xiong, ZHOU Changsheng, GONG Lunkun. Numerical simulation of the ignition transient of dual pulse motor based on multi-physics coupling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2017, 38(4): 120409-120409. |
[10] | YU Jiaquan, XU Jinsheng, CHEN Xiong, ZHOU Changsheng, JIA Deng, LI Hongwen. Rate-dependent property of propellant and inhibitor interface debonding [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(12): 3861-3867. |
[11] | SUN Xiasheng, XIAO Yingchun. Opportunities and Challenges of Aircraft Structural Health Monitoring [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(12): 3199-3212. |
[12] | Xiong Wenbo;Liu Yu;Ren Junxue;Zhang Xiaoguang. Generalized Burning Surface Calculation of Three Dimensional Propellant Based on Element Method [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2009, 30(7): 1176-1180. |
[13] | Shen Zhen. DESIGN ALLOWABLES OF COMPOSITE AIRCRAFT STRUCTURESAND THEIR DETERMINATION PRINCIPLES [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1998, 19(4): 385-392. |
[14] | Zhou Xi-yuan;Yu Shu-kui. RESEARCH OF ENVIRONMENTAL SPECTRUM FOR AIRCRAFT STRUCTURE [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1992, 13(3): 121-127. |
[15] | Wang Songbai. DISTRIBUTION OF THE PARTICLE DIAMETERS IN THE JET EXHAUST OF SOLID ROCKET MOTOR [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 1990, 11(12): 606-609. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341