1 |
廖达雄, 黄知龙, 陈振华, 等. 大型低温高雷诺数风洞及其关键技术综述[J]. 实验流体力学, 2014, 28(2): 1-6, 20.
|
|
LIAO D X, HUANG Z L, CHEN Z H, et al. Overview of large-scale low-temperature and high Reynolds number wind tunnels and their key technologies[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(2): 1-6, 20 (in Chinese).
|
2 |
RUAN Y X, HOU Y, XUE R, et al. Effects of operational parameters on liquid nitrogen spray cooling[J]. Applied Thermal Engineering, 2019, 146: 85-91.
|
3 |
YANG X L, XUE R, WANG N, et al. Review of internal cavitating flow in injection nozzles, external atomization and cooling in liquid nitrogen spray cooling systems[J]. Cryogenics, 2023, 131: 103661.
|
4 |
苗庆硕, 魏震, 陈佳军, 等. 低温风洞中液氮液滴的破碎特性模拟研究[J]. 西安交通大学学报, 2024, 58(2): 91-99.
|
|
MIAO Q S, WEI Z, CHEN J J, et al. Simulation of breakup characteristics of liquid nitrogen droplets in cryogenic wind tunnel[J]. Journal of Xi’an Jiaotong University, 2024, 58(2): 91-99 (in Chinese).
|
5 |
阮一逍, 薛绒, 赖欢, 等. 单液氮液滴在气流中的蒸发运动特性研究[J]. 西安交通大学学报, 2017, 51(6): 147-152.
|
|
RUAN Y X, XUE R, LAI H, et al. Evaporation and movement characteristics of single liquid nitrogen droplet in high-speed gas flow[J]. Journal of Xi’an Jiaotong University, 2017, 51(6): 147-152 (in Chinese).
|
6 |
ZHOU D D, LIU X F, YANG S, et al. Collision dynamics of two liquid nitrogen droplets under a low-temperature condition[J]. Cryogenics, 2022, 124: 103478.
|
7 |
强伟, 侯予, 薛绒, 等. 氮液滴碰撞不同浸润性壁面特性研究[J]. 西安交通大学学报, 2021, 55(7): 151-157.
|
|
QIANG W, HOU Y, XUE R, et al. Research on the behaviors of nitrogen droplets impacting surfaces with different wettabilities[J]. Journal of Xi’an Jiaotong University, 2021, 55(7): 151-157 (in Chinese).
|
8 |
LIANG G T, MUDAWAR I. Review of drop impact on heated walls[J]. International Journal of Heat and Mass Transfer, 2017, 106: 103-126.
|
9 |
CAI C, MUDAWAR I. Review of the dynamic Leidenfrost point temperature for droplet impact on a heated solid surface[J]. International Journal of Heat and Mass Transfer, 2023, 217: 124639.
|
10 |
LUO J, WU S Y, XIAO L, et al. Transient boiling heat transfer mechanism of droplet impacting heated cylinder[J]. International Journal of Mechanical Sciences, 2022, 233: 107675.
|
11 |
TRAN T, STAAT H J J, PROSPERETTI A, et al. Drop impact on superheated surfaces[J]. Physical Review Letters, 2012, 108(3): 036101.
|
12 |
LIANG G T, SHEN S Q, GUO Y L, et al. Boiling from liquid drops impact on a heated wall[J]. International Journal of Heat and Mass Transfer, 2016, 100: 48-57.
|
13 |
WANG A B, LIN C H, CHEN C C. The critical temperature of dry impact for tiny droplet impinging on a heated surface[J]. Physics of Fluids, 2000, 12(6): 1622-1625.
|
14 |
CHIU S L, LIN T H. Experiment on the dynamics of a compound drop impinging on a hot surface[J]. Physics of Fluids, 2005, 17(12): 122103.
|
15 |
NASR G G, YULE A J, AKHTAR S W. Characteristics of water droplet impaction behavior on a polished steel heated surface: Part i[J]. Atomization and Sprays, 2007, 17(8): 659-681.
|
16 |
STAAT H J J, TRAN T, GEERDINK B, et al. Phase diagram for droplet impact on superheated surfaces[J]. Journal of Fluid Mechanics, 2015, 779: R3.
|
17 |
NAIR H, STAAT H J J, TRAN T, et al. The Leidenfrost temperature increase for impacting droplets on carbon-nanofiber surfaces[J]. Soft Matter, 2014, 10(13): 2102-2109.
|
18 |
CASTANET G, CABALLINA O, LEMOINE F. Drop spreading at the impact in the Leidenfrost boiling[J]. Physics of Fluids, 2015, 27(6): 063302.
|
19 |
ZHOU Z, YAN F W, ZHANG G X, et al. A study on the dynamic collision behaviors of a hydrous ethanol droplet on a heated surface[J]. Processes, 2023, 11(6): 1804.
|
20 |
HATTA N, FUJIMOTO H, KINOSHITA K, et al. Experimental study of deformation mechanism of a water droplet impinging on hot metallic surfaces above the leidenfrost temperature[J]. Journal of Fluids Engineering, 1997, 119(3): 692-699.
|
21 |
BIANCE A L, CHEVY F, CLANET C, et al. On the elasticity of an inertial liquid shock[J]. Journal of Fluid Mechanics, 2006, 554: 47-66.
|
22 |
CHEN R H, CHIU S L, LIN T H. Resident time of a compound drop impinging on a hot surface[J]. Applied Thermal Engineering, 2007, 27(11-12): 2079-2085.
|
23 |
LAMINI O, WU R, ZHAO C Y. Experimental study on the effect of the liquid/surface thermal properties on droplet impact[J]. Thermal Science, 2021, 25(1 Part B): 705-716.
|
24 |
SHIROTA M, VAN LIMBEEK M A J, SUN C, et al. Dynamic leidenfrost effect: Relevant time and length scales[J]. Physical Review Letters, 2016, 116(6): 064501.
|
25 |
VARA PRASAD G V V S, YADAV M, DHAR P, et al. Morphed inception of dynamic Leidenfrost regime in colloidal dispersion droplets[J]. Physics of Fluids, 2023, 35(1): 012107.
|
26 |
丁月. 大温差下液滴运动及撞击表面行为规律研究[D]. 武汉: 华中科技大学, 2022.
|
|
DING Y. Study on droplet movement and impact surface behavior under large temperature difference[D].Wuhan: Huazhong University of Science and Technology, 2022 (in Chinese).
|
27 |
赵可, 佘阳梓, 蒋彦龙, 等. 液氮滴撞击壁面相变行为的数值研究[J]. 物理学报, 2019, 68(24): 195-209.
|
|
ZHAO K, SHE Y Z, JIANG Y L, et al. Numerical study on phase change behavior of liquid nitrogen droplets impinging on solid surface[J]. Acta Physica Sinica, 2019, 68(24): 195-209 (in Chinese).
|
28 |
VAN LIMBEEK M A J, NES T H, VANAPALLI S. Impact dynamics and heat transfer characteristics of liquid nitrogen drops on a sapphire prism[J]. International Journal of Heat and Mass Transfer, 2020, 148: 118999.
|
29 |
BOUWHUIS W, VAN DER VEEN R C A, TRAN T, et al. Maximal air bubble entrainment at liquid-drop impact[J]. Physical Review Letters, 2012, 109(26): 264501.
|
30 |
QIN M X, YANG T, SONG Y X, et al. Subpatterns of thin-sheet splash of a droplet impact on a heated surface[J]. Langmuir, 2022, 38(2): 810-817.
|