Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (9): 630952.doi: 10.7527/S1000-6893.2024.30952
• special column • Previous Articles Next Articles
Xiaoxu ZHANG1, Wei XIAO2, Jun CAO2, Wei LI2, Hua ZHOU1(), Zhuyin REN1
Received:
2024-07-17
Revised:
2024-09-02
Accepted:
2024-09-24
Online:
2025-05-15
Published:
2024-09-29
Contact:
Hua ZHOU
E-mail:zhouhua@mail.tsinghua.edu.cn
CLC Number:
Xiaoxu ZHANG, Wei XIAO, Jun CAO, Wei LI, Hua ZHOU, Zhuyin REN. Review of mechanism and prediction model of boundary layer flashback in hydrogen-fueled combustor[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 630952.
Table 3
Development of turbulent BLF criteria
判据提出人与提出年份 | 回火判据形式 | 验证实验 | 核心假设与理论 |
---|---|---|---|
Khitrin等[ | 定性预测趋势 | 层流与湍流管道回火实验 甲烷空气火焰 Tu=293~673 K p=1 atm | 临界速度梯度 |
Lin等[ | 定量预测回火极限 | 湍流管道回火实验 X(H2)=50% Tu=293~673 K p=1~15 atm | 临界速度梯度 |
Kalantari等[ | 定性预测趋势 | 湍流管道回火实验 氢气空气火焰 Tu=300~500 K p=3~8 atm | 临界速度梯度 |
Hoferichter等[ | 定量预测回火极限 | 湍流槽道回火实验 氢气空气火焰 Tu=293~673 K p=1 atm | 边界层分离 |
Ebi等[ | 定性预测趋势 | 旋流钝体回火实验 氢气/甲烷空气火焰 X(H2)=50%~100% Tu=293~523 K p=1~7.5 atm | 临界速度梯度 |
Novoselov等[ | 定量预测回火极限 | 旋流钝体回火实验 氢气/甲烷空气火焰 X(H2)=50%~100% Tu=293~523 K p=1~7.5 atm | 临界速度梯度 |
1 | KALANTARI A, MCDONELL V. Boundary layer flashback of non-swirling premixed flames: Mechanisms, fundamental research, and recent advances[J]. Progress in Energy and Combustion Science, 2017, 61: 249-292. |
2 | 吕海陆, 李丹, 张扬, 等. 富氢燃料气射流预混火焰回火特性的研究进展[J]. 力学学报, 2023, 55(12): 2718-2731. |
LYU H L, LI D, ZHANG Y, et al. Research progress on flashback characteristics of the premixed jet flames of hydrogen-rich fuels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(12): 2718-2731 (in Chinese). | |
3 | BILLANT P, CHOMAZ J M, HUERRE P. Experimental study of vortex breakdown in swirling jets[J]. Journal of Fluid Mechanics, 1998, 376(1): 183-219. |
4 | LEIBOVICH S. The structure of vortex breakdown[J]. Annual Review of Fluid Mechanics, 1978, 10: 221-246. |
5 | KONLE M, KIESEWETTER F, SATTELMAYER T. Simultaneous high repetition rate PIV-LIF-measurements of CIVB driven flashback[J]. Experiments in Fluids, 2008, 44(4): 529-538. |
6 | ASATO K, WADA H, HIRUMA T, et al. Characteristics of flame propagation in a vortex core: Validity of a model for flame propagation[J]. Combustion and Flame, 1997, 110(4): 418-428. |
7 | DUWIG C, FUCHS L. Large eddy simulation of vortex breakdown/flame interaction[J]. Physics of Fluids, 2007, 19(7): 075103. |
8 | KONLE M, SATTELMAYER T. Interaction of heat release and vortex breakdown during flame flashback driven by combustion induced vortex breakdown[J]. Experiments in Fluids, 2009, 47(4): 627-635. |
9 | DAM B, CORONA G, HAYDER M, et al. Effects of syngas composition on combustion induced vortex breakdown (CIVB) flashback in a swirl stabilized combustor[J]. Fuel, 2011, 90(11): 3274-3284. |
10 | EICHLER C, SATTELMAYER T. Premixed flame flashback in wall boundary layers studied by long-distance micro-PIV[J]. Experiments in Fluids, 2012, 52(2): 347-360. |
11 | GRUBER A, CHEN J H, VALIEV D, et al. Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow[J]. Journal of Fluid Mechanics, 2012, 709: 516-542. |
12 | 莫妲, 林宇震, 韩啸, 等. 氢气微混燃烧技术研究现状和未来展望[J]. 航空学报, 2024, 45(7): 028994. |
MO D, LIN Y Z, HAN X, et al. Research progress and future prospect of hydrogen micromix combustion technology[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 028994 (in Chinese). | |
13 | 莫妲, 刘一雄, 林宇震, 等. 氢气微混扩散燃烧技术发展[J]. 航空动力, 2024(2): 37-40. |
MO D, LIU Y X, LIN Y Z, et al. Development of hydrogen micro-mixing diffusion combustion technology[J]. Aerospace Power, 2024(2): 37-40 (in Chinese). | |
14 | GONG X, WANG X, ZHOU H, et al. Laminar flame speed and autoignition characteristics of surrogate jet fuel blended with hydrogen[J]. Proceedings of the Combustion Institute, 2023, 39(2): 1773-1781. |
15 | ZHANG X X, WANG X, ZHOU H, et al. Effects of Soret and differential diffusion on boundary layer flashback of H2/CH4 swirling flames[J]. Proceedings of the Combustion Institute, 2024, 40(1-4): 105327. |
16 | DANIELE S, JANSOHN P, BOULOUCHOS K. Flashback propensity of syngas flames at high pressure: Diagnostic and control[C]∥ASME Turbo Expo 2010: Power for Land, Sea, and Air. New York: ASME, 2010: 1169-1175. |
17 | BAUMGARTNER G, SATTELMAYER T. Experimental investigation on the effect of boundary layer fluid injection on the flashback propensity of premixed hydrogen-air flames[C]∥ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. New York: ASME, 2013. |
18 | EICHLER C, BAUMGARTNER G, SATTELMAYER T. Experimental investigation of turbulent boundary layer flashback limits for premixed hydrogen-air flames confined in ducts[J]. Journal of Engineering for Gas Turbines and Power, 2012, 134(1): 011502. |
19 | LEWIS B, VON ELBE G. Stability and structure of burner flames[J]. The Journal of Chemical Physics, 1943, 11(2): 75-97. |
20 | EDSE R. Studies on burner flames of hydrogen-oxygen mixtures at high pressures: Wright Air Development Centre Technical Report[R]. Washington, D.C.: Wright Air Developrnent Centre, 1952. |
21 | FINE B. Stability limits and burning velocities of laminar hydrogen-air flames at reduced pressure: NACA-TN-3833 [R]. Washington, D.C.: NACA, 1956. |
22 | FINE B. Further experiments on the stability of laminar and turbulent hydrogen-air flames at reduced pressures: NACA-TN-3977[R]. Washington, D.C.: NACA, 1957. |
23 | FINE B. The flashback of laminar and turbulent burner flames at reduced pressure[J]. Combustion and Flame, 1958, 2(3): 253-266. |
24 | DUAN Z X, SHAFFER B, MCDONELL V. Study of fuel composition, burner material, and tip temperature effects on flashback of enclosed jet flame[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(12): 121504. |
25 | DUAN Z X, SHAFFER B, MCDONELL V, et al. Influence of burner material, tip temperature, and geometrical flame configuration on flashback propensity of H2-air jet flames[J]. Journal of Engineering for Gas Turbines and Power, 2014, 136(2): 021502. |
26 | BAUMGARTNER G, BOECK L R, SATTELMAYER T. Experimental investigation of the transition mechanism from stable flame to flashback in a generic premixed combustion system with high-speed micro-particle image velocimetry and micro-PLIF combined with chemiluminescence imaging[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(2): 021501. |
27 | LEE S T, T’IEN J S. A numerical analysis of flame flashback in a premixed laminar system[J]. Combustion and Flame, 1982, 48: 273-285. |
28 | ENDRES A, SATTELMAYER T. Large eddy simulation of confined turbulent boundary layer flashback of premixed hydrogen-air flames[J]. International Journal of Heat and Fluid Flow, 2018, 72: 151-160. |
29 | ENDRES A, SATTELMAYER T. Numerical investigation of pressure influence on the confined turbulent boundary layer flashback process[J]. Fluids, 2019, 4(3): 146. |
30 | GRUBER A, KERSTEIN A R, VALIEV D, et al. Modeling of mean flame shape during premixed flame flashback in turbulent boundary layers[J]. Proceedings of the Combustion Institute, 2015, 35(2): 1485-1492. |
31 | AHMED U, PILLAI A L, CHAKRABORTY N, et al. Statistical behavior of turbulent kinetic energy transport in boundary layer flashback of hydrogen-rich premixed combustion[J]. Physical Review Fluids, 2019, 4(10): 103201. |
32 | WANG H O, WANG Z, LUO K, et al. Direct numerical simulation of turbulent boundary layer premixed combustion under auto-ignitive conditions[J]. Combustion and Flame, 2021, 228: 292-301. |
33 | ZHU Z F, WANG H O, CHEN G, et al. Interactions of turbulence and flame during turbulent boundary layer premixed flame flashback under isothermal and adiabatic wall conditions using direct numerical simulation[J]. 2023, 35(12): 125106. |
34 | EBI D, CLEMENS N T. Experimental investigation of upstream flame propagation during boundary layer flashback of swirl flames[J]. Combustion and Flame, 2016, 168: 39-52. |
35 | EBI D, RANJAN R, CLEMENS N T. Coupling between premixed flame propagation and swirl flow during boundary layer flashback[J]. Experiments in Fluids, 2018, 59(7): 109. |
36 | RANJAN R, CLEMENS N T. Insights into flashback-to-flameholding transition of hydrogen-rich stratified swirl flames[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6289-6297. |
37 | RANJAN R, EBI D F, CLEMENS N T. Role of inertial forces in flame-flow interaction during premixed swirl flame flashback[J]. Proceedings of the Combustion Institute, 2019, 37(4): 5155-5162. |
38 | EBI D, BOMBACH R, JANSOHN P. Swirl flame boundary layer flashback at elevated pressure: Modes of propagation and effect of hydrogen addition[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6345-6353. |
39 | LIETZ C, RAMAN V. Large eddy simulation of flame flashback in swirling premixed CH4/H2-air flames[C]∥53rd AIAA aerospace sciences meeting. Reston: AIAA, 2015. |
40 | XIA H, HAN W, WEI X T, et al. Numerical investigation of boundary layer flashback of CH4/H2/air swirl flames under different thermal boundary conditions in a bluff‐body swirl burner[J]. Proceedings of the Combustion Institute, 2023, 39(4): 4541-4551. |
41 | NOVOSELOV A G, EBI D, NOIRAY N. Confined boundary-layer flashback flame dynamics in a turbulent swirling flow[J]. AIAA Journal, 2023, 61(4): 1548-1554. |
42 | ZHANG S M, LU Z, YANG Y. Modeling the boundary-layer flashback of premixed hydrogen-enriched swirling flames at high pressures[J]. Combustion and Flame, 2023, 255: 112900. |
43 | LEWIS B, VON ELBE G. Combustion, flames and explosions of gases [M].3rd ed. Deron: Academic Press,1987:216-413. |
44 | HARRIS M E, GRUMER J, VON ELBE G, et al. Burning velocities, quenching, and stability data on nonturbulent flames of methane and propane with oxygen and nitrogen application of theory of ignition, quenching, and stabilizationto flames of propane and air[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1): 80-89. |
45 | WOHL K. Quenching, flash-back, blow-off-theory and experiment[J]. Symposium (International) on Combustion, 1953, 4(1): 68-89. |
46 | BERLAD A L, POTTER A E. Relation of boundary velocity gradient for flash-back to burning velocity and quenching distance[J]. Combustion and Flame, 1957, 1(1): 127-128. |
47 | KHITRIN L N, MOIN P B, SMIRNOV D B, et al. Peculiarities of laminar- and turbulent-flame flashbacks[J]. Symposium (International) on Combustion, 1965, 10(1): 1285-1291. |
48 | PUTNAM A A, JENSEN R A. Application of dimensionless numbers to flash-back and other combustion phenomena[J]. Symposium on Combustion and Flame, and Explosion Phenomena, 1948, 3(1): 89-98. |
49 | STRAKEY P, SIDWELL T, ONTKO J. Investigation of the effects of hydrogen addition on lean extinction in a swirl stabilized combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2): 3173-3180. |
50 | LIN Y-C, DANIELE S, JANSOHN P, et al. Turbulent flame speed as an indicator for flashback propensity of hydrogen-rich fuel gases[J]. Journal of Engineering for Gas Turbines and Power, 2013, 135(11): 111503. |
51 | KALANTARI A, SULLIVAN-LEWIS E, MCDONELL V. Flashback propensity of turbulent hydrogen-air jet flames at gas turbine premixer conditions[J]. Journal of Engineering for Gas Turbines and Power, 2016, 138(6): 061506. |
52 | HOFERICHTER V, HIRSCH C, SATTELMAYER T. Prediction of confined flame flashback limits using boundary layer separation theory[J]. Journal of Engineering for Gas Turbines and Power, 2017, 139(2): 021505. |
53 | HOFERICHTER V, HIRSCH C, SATTELMAYER T. Analytic prediction of unconfined boundary layer flashback limits in premixed hydrogen-air flames[J]. Combustion Theory and Modelling, 2017, 21(3): 382-418. |
54 | NOVOSELOV A G, EBI D, NOIRAY N. Accurate prediction of confined turbulent boundary layer flashback through a critically strained flame model[C]∥ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. New York: ASME, 2022. |
55 | BOUVET N, HALTER F, CHAUVEAU C, et al. On the effective Lewis number formulations for lean hydrogen/hydrocarbon/air mixtures[J]. International Journal of Hydrogen Energy, 2013, 38(14): 5949-5960. |
56 | BELL J B, CHENG R K, DAY M S, et al. Numerical simulation of Lewis number effects on lean premixed turbulent flames[J]. Proceedings of the Combustion Institute, 2007, 31(1): 1309-1317. |
57 | DUAN Z X, KALANTARI A, MCDONELL V. Parametric analysis of flashback propensity with various fuel compositions and burner materials[C]∥ASME Turbo Expo 2015: Turbine Technical Conference and Exposition. New York: ASME, 2015. |
58 | STRATFORD B S. The prediction of separation of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 1959, 5: 1-16. |
59 | BECHTOLD J K, MATALON M. The dependence of the Markstein length on stoichiometry[J]. Combustion and Flame, 2001, 127(1-2): 1906-1913. |
[1] | Shiqi WANG, Qinglan WEN, Peng ZHAO, Yixin CHENG, Liang MA, Zhigang JIA, Quan WEN. Experiments on afterburner combustion performance with self-excited sweeping nozzle in high speed and medium temperature air flow [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 131261-131261. |
[2] | Xiaoyuan ZHANG, Jinping LI, Hu MA, Shizhong ZHANG, Shuo CHEN, Xingyu LU. Experimental initiation process of oblique detonation wave in combustion chamber under high Mach number conditions [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(9): 231167-231167. |
[3] | Haotian ZHANG, Yonghui ZHANG, Pengfei MA, Yun WANG, Wei FAN. Effects of filling flow rate and equivalence ratio on flame acceleration in an obstacle channel [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(4): 130940-130940. |
[4] | Shiqi WANG, Quan WEN, Zhigang JIA, Yixin CHENG, Lin LI, Chi ZHANG, Weiye HUO, Liang MA. Experiment on afterburner combustion efficiency based on self-excited sweeping nozzle [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130621-130621. |
[5] | Yunxia YOU, Zhouqin FAN, Weiqiang CHEN, Cheng CAO, Fanfu KONG. Numerical simulation of primary atomization for dual-stage swirl airblast atomizer [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730579-730579. |
[6] | Liwen CAO, Ke WANG, Ziyang XU, Xiaoyu SU, Wei FAN. Experimental study on propagation characteristics of stable detonation waves in curved channels [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(24): 130385-130385. |
[7] | Haochen XIONG, Ruofan QIU, Xin HAN, Hao YAN, Tao ZHANG, Yancheng YOU. New method for detonation initiation induced by curved shock wave [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 129682-129682. |
[8] | Hongwei QIAO, Jianhan LIANG, Lin ZHANG, Mingbo SUN, Yuqiao CHEN. Research progress of probability density function approach in supersonic combustion [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 28802-028802. |
[9] | Da MO, Yuzhen LIN, Hongyu MA, Xiao HAN, Yixiong LIU. Investigation on hydrogen micromix diffusive combustion organization based on bluff body disturbance [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 128928-128928. |
[10] | Da MO, Yuzhen LIN, Xiao HAN, Hongyu MA, Yixiong LIU. Research progress and future prospect of hydrogen micromix combustion technology [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 28994-028994. |
[11] | Gaojie ZHENG, Xiaoming HE, Dongpo LI, Huijun TAN, Kun WANG, Zhenlong WU, Depeng WANG. Double 90° deflection inlet/volute coupling flow characteristics of tail-powered unmanned aerial vehicle [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 128782-128782. |
[12] | Zhikai WANG, Sheng CHEN, Wei FAN. Effect of neural network width on combustor emission prediction [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 126816-126816. |
[13] | Qingdi GUAN, Jianhan LIANG, Lin ZHANG, Wenwu CHEN, Yuqiao CHEN. Probability density function method in general curvilinear coordinate system and its application in supersonic combustion [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(4): 126677-126677. |
[14] | Chunsheng NIE, Ye YUAN, Wei MA, Zhanwei CAO, Mingxing YU. Effect of active ejection gas parameters on thermal environment of plate and air rudder [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S2): 170-179. |
[15] | DENG Tian, LI Jiazhou, CHEN Wei. Breakup mechanism of viscous liquid transverse jet [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(3): 125130-125130. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341