Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (7): 30877.doi: 10.7527/S1000-6893.2024.30877
• Reviews • Previous Articles
Yuequn LUO1(
), Dali DING2, Mulai TAN1, Yidong LIU1, Huan ZHOU2
Received:2024-06-27
Revised:2024-07-22
Accepted:2024-10-07
Online:2024-10-11
Published:2024-10-11
Contact:
Yuequn LUO
E-mail:13014106881@163.com
Supported by:CLC Number:
Yuequn LUO, Dali DING, Mulai TAN, Yidong LIU, Huan ZHOU. A review of autonomous maneuver decision methods for unmanned combat aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 30877.
Table 2
Comparative summary of autonomous maneuver decision-making methods
| 类别 | 主要方法 | 优势 | 不足 |
|---|---|---|---|
| 数学求解 | 微分博弈 | 数学描述清晰;求解直观,解释性好;适用于求解UCAV连续机动动作 | 计算量大,难以用于在线实时决策;只适用于简单对抗场景;难以同时考虑敌我双方的机动特征;难以处理不确定性信息 |
| 影响图博弈 | 建模和求解过程直观、解释性好;构建模型时可融入专家知识和飞行员经验;可扩展性好;适用于处理不确定空中对抗条件下的协同机动决策问题 | 似然函数难以确定;计算量大、计算复杂度高;难以满足决策实时性要求 | |
| 数据驱动 | 贝叶斯推理 | 充分利用先验空战经验;实现对飞行员决策思维拟合;具有清晰的机动决策模型结构;简单对抗场景下,机动决策模型具有一定的战场环境适应性;决策网络具备较强移植性 | 机动决策模型的参数设置受主观因素影响大;专家知识和飞行员经验提取难度大;决策模型对复杂对抗场景的适应性不足 |
| 强化学习 | 模型训练时不需要人工标注的数据;与战场环境的交互性好;具备持续学习能力;行动策略具有较强的鲁棒性;构建模型时可融入导弹攻击区、传感器探测范围等因素 | 难以融入领域专家知识和飞行员经验;奖励函数的设计缺乏统一的设计规范;泛化性不足;行动策略的可解释性差;决策模型训练时间过长 | |
| 深度强化学习 | 模型训练时不需要人工标注的数据;泛化性好;优化策略求解过程具有较强自主性;UCAV的行动策略序列具有一定的前瞻性;扩展性好;计算实时性较好 | 决策模型训练时间长、训练过程复杂;决策模型难以根据决策结果进行改进;机动决策模型初期效果表现不佳;训练数据获取难度大 | |
| 智能优化 | 遗传算法 | 易于与其他算法结合;鲁棒性和搜索性好;机动策略 可解释性好 | 态势评估模型设计环节受主观因素影响大;实时性不足;无法对没有显式目标函数的问题建模 |
| 专家系统 | 充分利用专家知识和飞行员经验;针对特定对抗场景求解速度快;具有可追溯性和较好的可解释性;有利于增强UCAV自主机动决策的稳定性和可信度;有助于提高空战机动策略模型训练效率 | 专家知识和飞行员经验难以表示为战术知识;泛化性不足;决策模型自学习能力不足;对抗场景复杂时,难以构建专家系统规则库;不具备自适应更新模型结构或参数的能力 | |
| 群智能算法 | 求解精度高;对动态空战对抗环境具有较好适应性;适用于UCAV在线实时机动决策 | 构建机动决策目标函数易受主观因素影响;可解释性不足;空战对抗过程中存在的干扰因素影响目标函数的求解 |
Table 4
Performance comparison of different types of methods in 1v1 air combat with fixed initial situations
| 参数 | 矩阵对策 | HAMXCS | PPO |
|---|---|---|---|
| 学习耗时/h | 168.98 | 106.32 | |
| 我机开火率/% | 25.60±3.43 | 84.67±4.03 | 87.27±4.31∗ |
| 敌机开火率/% | 1.16±1.09 | 10.93±3.47 | 3.80±2.18 |
| 我机存活率/% | 36.97±4.64 | 87.27±3.87 | 92.93±3.38∗ |
| 敌机存活率/% | 58.17±5.07 | 10.93±3.47 | 6.23±3.13 |
| 单个对局所需步数 | 259.47±267.62 | 313.38±224.29 | 152.69±165.07∗ |
| 单次决策耗时/ms | 82.16±135.64 | 1.43±1.42 | 0.78±0.79∗ |
| 1 | 孙智孝, 杨晟琦, 朴海音, 等. 未来智能空战发展综述[J]. 航空学报, 2021, 42(8): 525799. |
| SUN Z X, YANG S Q, PIAO H Y, et al. A survey of air combat artificial intelligence[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(8): 525799 (in Chinese). | |
| 2 | 陈浩, 黄健, 刘权, 等. 自主空战机动决策技术研究进展与展望[J]. 控制理论与应用, 2023, 40(12): 2104-2129. |
| CHEN H, HUANG J, LIU Q, et al. Review and prospects of autonomous air combat maneuver decisions[J].Journal of Control Theory and Applications, 2023, 40(12): 2104-2129 (in Chinese). | |
| 3 | DUAN H B, LEI Y Q, XIA J, et al. Autonomous maneuver decision for unmanned aerial vehicle via improved pigeon-inspired optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2023, 59(3): 3156-3170. |
| 4 | LIU Y F, QI N M, TANG Z W. Linear quadratic differential game strategies with two-pursuit versus single-evader[J]. Chinese Journal of Aeronautics, 2012, 25(6): 896-905. |
| 5 | PARK H, LEE B Y, TAHK M J, et al. Differential game based air combat maneuver generation using scoring function matrix[J]. International Journal of Aeronautical and Space Sciences, 2016, 17(2): 204-213. |
| 6 | WANG M L, WANG L X, YUE T, et al. Influence of unmanned combat aerial vehicle agility on short-range aerial combat effectiveness[J]. Aerospace Science and Technology, 2020, 96: 105534. |
| 7 | LÓPEZ N R, ŻBIKOWSKI R. Effectiveness of autonomous decision making for unmanned combat aerial vehicles in dogfight engagements[J]. Journal of Guidance,Control, and Dynamics, 2018, 41(4): 1021-1024. |
| 8 | LI S Y, CHEN M, WANG Y H, et al. Air combat decision-making of multiple UCAVs based on constraint strategy games[J]. Defence Technology, 2022, 18(3): 368-383. |
| 9 | VIRTANEN K, RAIVIO T, HAMALAINEN R P. Modeling pilot’s sequential maneuvering decisions by a multistage influence diagram[J]. Journal of Guidance, Control, and Dynamics, 2004, 27(4): 665-677. |
| 10 | EKLUND J M, SPRINKLE J, SASTRY S S. Switched and symmetric pursuit/evasion games using online model predictive control with application to autonomous aircraft[J]. IEEE Transactions on Control Systems Technology, 2012, 20(3): 604-620. |
| 11 | HUANG C Q, DONG K S, HUANG H Q, et al. Autonomous air combat maneuver decision using Bayesian inference and moving horizon optimization[J]. Journal of Systems Engineering and Electronics, 2018, 29(1): 86-97. |
| 12 | MCGREW J S, HOW J P, WILLIAMS B, et al. Air-combat strategy using approximate dynamic programming[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(5): 1641-1654. |
| 13 | ZHANG H P, HUANG C Q. Maneuver decision-making of deep learning for UCAV thorough azimuth angles[J]. IEEE Access, 2020, 8: 12976-12987. |
| 14 | YANG Q M, ZHANG J D, SHI G Q, et al. Maneuver decision of UAV in short-range air combat based on deep reinforcement learning[J]. IEEE Access, 2020, 8: 363-378. |
| 15 | ERNEST N, CARROLL D, SCHUMACHER C, et al.Genetic fuzzy based artificial intelligence for unmanned combat aerial vehicle control in simulated air combat missions[J]. Journal of Defense Management, 2016, 6(1): 144. |
| 16 | DUAN H B, LI P, YU Y X. A predator-prey particle swarm optimization approach to multiple UCAV air combat modeled by dynamic game theory[J]. IEEE/CAA Journal of Automatica Sinica, 2015, 2(1): 11-18. |
| 17 | HAN T, WANG X F, LIANG Y J, et al. Study on UCAV robust maneuvering decision in automatic air combat based on target accessible domain[J]. Journal of Physics: Conference Series, 2019, 1213(5): 052004. |
| 18 | HO E, RAJAGOPALAN A, SKVORTSOV A, et al. Game theory in defence applications: A review[J]. Sensors, 2022, 22(3): 1032. |
| 19 | 钟友武, 杨凌宇, 柳嘉润, 等. 基于智能微分对策的自主机动决策方法研究[J]. 飞行力学, 2008, 26(6): 29-33. |
| ZHONG Y W, YANG L Y, LIU J R, et al. Method of autonomous maneuver decision based on intelligent differential game[J]. Flight Dynamics,2008, 26(6): 29-33 (in Chinese). | |
| 20 | 王义宁, 姜玉宪. 空战决策中的智能微分对策法[J]. 飞行力学, 2003, 21(1): 66-70. |
| WANG Y N, JIANG Y X. An intelligent differential gameon air combat decision[J]. Flight Dynamics, 2003, 21(1): 66-70 (in Chinese). | |
| 21 | LEE B Y, HAN S, PARK H J, et al. One-versus-one air-to-air combat maneuver generation based on the differential game[C]∥ Proceedings of the 2016 Congress of the International Council of the Aeronautical Sciences. ICAS, 2016: 1-7. |
| 22 | HORIE K, CONWAY B A. Optimal fighter pursuit-evasion maneuvers found via two-sided optimization[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(1): 105-112. |
| 23 | XU G Y, WEI S N, ZHANG H M. Application of situation function in air combat differential games[C]∥ 2017 36th Chinese Control Conference (CCC). Piscataway: IEEE Press, 2017: 5865-5870. |
| 24 | GARCIA E, MOLLA V, CASBEER D W, et al. Strategies for defending a coastline against multiple attackers[C]∥ 2019 IEEE 58th Conference on Decision and Control (CDC). Piscataway: IEEE Press, 2019: 7319-7324. |
| 25 | VIRTANEN K, KARELAHTI J, RAIVIO T. Modeling air combat by a moving horizon influence diagram game[J]. Journal of Guidance, Control, and Dynamics, 2006, 29(5): 1080-1091. |
| 26 | ZHONG L, TONG M A, ZHONG W, et al. Sequential maneuvering decisions based on multi-stage influence diagram in air combat[J]. Journal of Systems Engineering and Electronics, 2007, 18(3): 551-555. |
| 27 | LU H C, WU B Y, CHEN J Q. Fighter equipment contribution evaluation based on maneuver decision[J]. IEEE Access, 2021, 9: 132241-132254. |
| 28 | PAN Q, ZHOU D Y, HUANG J C, et al. Maneuver decision for cooperative close-range air combat based on state predicted influence diagram[C]∥ 2017 IEEE International Conference on Information and Automation (ICIA). Piscataway: IEEE Press, 2017: 726-731. |
| 29 | ZHOU S Y, WANG Z J, FAN G, et al. Collaborative maneuvering decision based on multi-layer influence diagram group decision-making[M]∥ Advances in Transdisciplinary Engineering. Netherlands: IOS Press, 2024:345-357. |
| 30 | 钟麟, 佟明安, 钟卫. 影响图对策在多机协同空战中的应用[J]. 北京航空航天大学学报, 2007, 33(4): 450-453. |
| ZHONG L, TONG M A, ZHONG W. Application of multistage influence diagram game theory for multiple cooperative air combat[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(4): 450-453 (in Chinese). | |
| 31 | GENG W X, KONG F E, MA D Q. Study on tactical decision of UAV medium-range air combat[C]∥ The 26th Chinese Control and Decision Conference (2014 CCDC). Piscataway: IEEE Press, 2014: 135-139. |
| 32 | WANG X F, WANG B S. Situation assessment method based on Bayesian network and intuitionistic fuzzy reasoning[J]. System Engineering and Electronics, 2009, 31(11): 2742-2746. |
| 33 | 刘守业. 非完备信息下无人机空战决策与导引方法研究[D]. 沈阳: 沈阳航空航天大学, 2022: 3-28. |
| LIU S Y. Decision-making and guidance method of unmanned aerial vehicle under incomplete information[D]. Shenyang: Shenyang Aerospace University, 2022: 3-28 (in Chinese). | |
| 34 | PIAO H Y, SUN Z X, MENG G L, et al. Beyond-visual-range air combat tactics auto-generation by reinforcement learning[C]∥ 2020 International Joint Conference on Neural Networks (IJCNN). Piscataway: IEEE Press, 2020: 1-8. |
| 35 | 张强, 杨任农, 俞利新, 等. 基于Q-network强化学习的超视距空战机动决策[J]. 空军工程大学学报, 2018, 19(6): 8-14. |
| ZHANG Q, YANG R N, YU L X, et al. BVR air combat maneuvering decision by using Q-network reinforcement learning[J]. Journal of Air Force Engineering University, 2018, 19(6): 8-14 (in Chinese). | |
| 36 | YANG Q M, ZHU Y, ZHANG J D, et al. UAV air combat autonomous maneuver decision based on DDPG algorithm[C]∥ 2019 IEEE 15th International Conference on Control and Automation (ICCA). Piscataway: IEEE Press, 2019: 37-42. |
| 37 | KONG W R, ZHOU D Y, YANG Z, et al. UAV autonomous aerial combat maneuver strategy generation with observation error based on state-adversarial deep deterministic policy gradient and inverse reinforcement learning[J]. Electronics, 2020, 9(7): 1121. |
| 38 | 黄长强, 赵克新, 韩邦杰, 等. 一种近似动态规划的无人机机动决策方法[J]. 电子与信息学报, 2018, 40(10): 2447-2452. |
| HUANG C Q, ZHAO K X, HAN B J, et al. Maneuvering decision-making method of UAV based on approximate dynamic programming[J]. Journal of Electronics & Information Technology, 2018, 40(10): 2447-2452 (in Chinese). | |
| 39 | MA Y F, MA X L, SONG X. A case study on air combat decision using approximated dynamic programming[J]. Mathematical Problems in Engineering, 2014(4): 183401. |
| 40 | 梅丹, 刘锦涛, 高丽. 基于近似动态规划与零和博弈的空战机动决策[J]. 兵工自动化, 2017, 36(3): 35-39. |
| MEI D, LIU J T, GAO L. Maneuver decision of air combat based on approximate dynamic programming and zero-sum game[J]. Ordnance Industry Automation, 2017, 36(3): 35-39 (in Chinese). | |
| 41 | HU Z C, GAO P, WANG F. Research on autonomous maneuvering decision of UCAV based on approximate dynamic programming[C]∥ 2019 International Conference on Image and Video Processing, and Artificial Intelligence. NewYork: SPIE, 2019: 636-641. |
| 42 | 姜龙亭, 寇雅楠, 王栋, 等. 改进近似动态规划法的攻击占位决策[J]. 火力与指挥控制, 2019, 44(7): 135-141. |
| JIANG L T, KOU Y N, WANG D, et al. Attack placeholder decision based on improved approximate dynamic programming[J]. Fire Control & Command Control, 2019, 44(7): 135-141 (in Chinese). | |
| 43 | CRUMPACKER J B, ROBBINS M J, JENKINS P R. An approximate dynamic programming approach for solving an air combat maneuvering problem[J]. Expert Systems with Applications, 2022, 203: 117448. |
| 44 | ARULKUMARAN K, DEISENROTH M P, BRUNDAGE M, et al. Deep reinforcement learning: A brief survey[J]. IEEE Signal Processing Magazine, 2017, 34(6): 26-38. |
| 45 | SILVER D, HUANG A, MADDISON C J, et al. Mastering the game of Go with deep neural networks and tree search[J]. Nature, 2016, 529: 484-489. |
| 46 | SILVER D, SCHRITTWIESER J, SIMONYAN K, et al. Mastering the game of Go without human knowledge[J]. Nature, 2017, 550: 354-359. |
| 47 | VINYALS O, BABUSCHKIN I, CZARNECKI W M, et al. Grandmaster level in StarCraft II using multi-agent reinforcement learning[J]. Nature, 2019, 575: 350-354. |
| 48 | BERNER C, BROCKMAN G, CHAN B, et al. Dota 2 with large scale deep reinforcement learning[DB/OL]. arXiv preprint: 1912.06680, 2019. |
| 49 | NGUYEN T T, NGUYEN N D, NAHAVANDI S. Deep reinforcement learning for multiagent systems: A review of challenges, solutions, and applications[J]. IEEE Transactions on Cybernetics, 2020, 50(9): 3826-3839. |
| 50 | LYU L, SHEN Y, ZHANG S C. The advance of reinforcement learning and deep reinforcement learning[C]∥ 2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). Piscataway: IEEE Press, 2022: 644-648. |
| 51 | SARKAR N I, GUL S. Artificial intelligence-based autonomous UAV networks: A survey[J]. Drones, 2023, 7(5): 322. |
| 52 | BAYERLEIN H, THEILE M, CACCAMO M, et al. Multi-UAV path planning for wireless data harvesting with deep reinforcement learning[J]. IEEE Open Journal of the Communications Society, 2021, 2: 1171-1187. |
| 53 | ZHU B T, BEDEER E, NGUYEN H H, et al. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning[J]. IEEE Transactions on Vehicular Technology, 2021, 70(9): 9540-9554. |
| 54 | WANG X, CHEN Y D, ZHU W W. A survey on curriculum learning[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(9): 4555-4576. |
| 55 | WANG Y B, JIANG T S, LI Y J. A hierarchical reinforcement learning method on multi UCAV air combat[C]∥ 2021 International Conference on Neural Networks, Information and Communication Engineering. New York: SPIE, 2021, 11933: 117-123. |
| 56 | WANG L, WANG K Z, PAN C H, et al. Multi-agent deep reinforcement learning-based trajectory planning for multi-UAV assisted mobile edge computing[J]. IEEE Transactions on Cognitive Communications and Networking, 2021, 7(1): 73-84. |
| 57 | ZHAO W L, MENG Z J, WANG K P, et al. Hierarchical active tracking control for UAVs via deep reinforcement learning[J]. Applied Sciences, 2021, 11(22): 10595. |
| 58 | LI B H, WU Y J. Path planning for UAV ground target tracking via deep reinforcement learning[J]. IEEE Access, 2020, 8: 29064-29074. |
| 59 | LI B, GAN Z G, CHEN D Q, et al. UAV maneuvering target tracking in uncertain environments based on deep reinforcement learning and meta-learning[J]. Remote Sensing, 2020, 12(22): 3789. |
| 60 | LI Y, HAN W, WANG Y Q. Deep reinforcement learning with application to air confrontation intelligent decision-making of manned/unmanned aerial vehicle cooperative system[J]. IEEE Access, 2020, 8: 67887-67898. |
| 61 | WU L Z, WANG C, ZHANG P P, et al. Deep reinforcement learning with corrective feedback for autonomous UAV landing on a mobile platform[J]. Drones, 2022, 6(9): 238. |
| 62 | XIE J Y, PENG X D, WANG H J, et al. UAV autonomous tracking and landing based on deep reinforcement learning strategy[J]. Sensors, 2020, 20(19): 5630. |
| 63 | XU D, GUO Y X, YU Z Y, et al. PPO-Exp: Keeping fixed-wing UAV formation with deep reinforcement learning[J]. Drones, 2022, 7(1): 28. |
| 64 | ZHAO W W, CHU H R, MIAO X K, et al. Research on the multiagent joint proximal policy optimization algorithm controlling cooperative fixed-wing UAV obstacle avoidance[J]. Sensors, 2020, 20(16): 4546. |
| 65 | ZHAO Y, CHEN Y F, ZHEN Z Y, et al. Multi-weapon multi-target assignment based on hybrid genetic algorithm in uncertain environment[J]. International Journal of Advanced Robotic Systems, 2020, 17(2): 1729881420905922. |
| 66 | ZHAO X R, YANG R N, ZHANG Y, et al. Deep reinforcement learning for intelligent dual-UAV reconnaissance mission planning[J]. Electronics, 2022, 11(13): 2031. |
| 67 | YUE L F, YANG R N, ZHANG Y, et al. Deep reinforcement learning for UAV intelligent mission planning[J]. Complexity, 2022(1): 3551508. |
| 68 | GUO T, JIANG N, LI B Y, et al. UAV navigation in high dynamic environments: A deep reinforcement learning approach[J]. Chinese Journal of Aeronautics, 2021, 34(2): 479-489. |
| 69 | HU J W, WANG L H, HU T M, et al. Autonomous maneuver decision making of dual-UAV cooperative air combat based on deep reinforcement learning[J]. Electronics, 2022, 11(3): 467. |
| 70 | WANG X W, WANG Y H, SU X C, et al. Deep reinforcement learning-based air combat maneuver decision-making: Literature review, implementation tutorial and future direction[J]. Artificial Intelligence Review, 2023, 57(1): 1. |
| 71 | CAO Y, KOU Y X, LI Z W, et al. Autonomous maneuver decision of UCAV air combat based on double deep Q network algorithm and stochastic game theory[J]. International Journal of Aerospace Engineering, 2023(1): 3657814. |
| 72 | ZHANG X B, LIU G Q, YANG C J, et al. Research on air confrontation maneuver decision-making method based on reinforcement learning[J]. Electronics, 2018, 7(11): 279. |
| 73 | PIAO H Y, HAN Y, CHEN H C, et al. Complex relationship graph abstraction for autonomous air combat collaboration: A learning and expert knowledge hybrid approach[J]. Expert Systems with Applications, 2023, 215: 119285. |
| 74 | SUN Z X, PIAO H Y, YANG Z, et al. Multi-agent hierarchical policy gradient for air combat tactics emergence via self-play[J]. Engineering Applications of Artificial Intelligence, 2021, 98: 104112. |
| 75 | LI Y F, SHI J P, JIANG W, et al. Autonomous maneuver decision-making for a UCAV in short-range aerial combat based on an MS-DDQN algorithm[J]. Defence Technology, 2022, 18(9): 1697-1714. |
| 76 | ZHANG H P, ZHOU H, WEI Y J, et al. Autonomous maneuver decision-making method based on reinforcement learning and Monte Carlo tree search[J]. Frontiers in Neurorobotics, 2022, 16: 996412. |
| 77 | YANG K B, DONG W H, CAI M, et al. UCAV air combat maneuver decisions based on a proximal policy optimization algorithm with situation reward shaping[J]. Electronics, 2022, 11(16): 2602. |
| 78 | ZHENG Z Q, DUAN H B. UAV maneuver decision-making via deep reinforcement learning for short-range air combat[J]. Intelligence & Robotics, 2023, 3(1): 76-94. |
| 79 | 杨书恒, 张栋, 熊威, 等. 基于可解释性强化学习的空战机动决策方法[J]. 航空学报, 2024, 45(18): 329922. |
| YANG S H, ZHANG D, XIONG W, et al. Decision-making method for air combat maneuver based on explainable reinforcement learning[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(18): 329922 (in Chinese). | |
| 80 | 谢建峰, 杨啟明, 戴树岭, 等. 基于强化遗传算法的无人机空战机动决策研究[J]. 西北工业大学学报, 2020, 38(6): 1330-1338. |
| XIE J F, YANG Q M, DAI S L, et al. Air combat maneuver decision based on reinforcement genetic algorithm[J]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1330-1338 (in Chinese). | |
| 81 | 周德云, 李锋, 蒲小勃, 等. 基于遗传算法的飞机战术飞行动作决策[J]. 西北工业大学学报, 2002, 20(1): 109-112. |
| ZHOU D Y, LI F, PU X B, et al. On improving tactical planning in air combat in P.R.China with genetic algorithm[J]. Journal of Northwestern Polytechnical University, 2002, 20(1): 109-112 (in Chinese). | |
| 82 | 王杰, 丁达理, 董康生, 等. UCAV自主空战战术机动动作建模与轨迹生成[J]. 火力与指挥控制, 2018, 43(12): 42-49. |
| WANG J, DING D L, DONG K S, et al. UCAV autonomous air combat tactical maneuvering modeling and trajectory generation[J]. Fire Control & Command Control, 2018, 43(12): 42-49 (in Chinese). | |
| 83 | 张涛, 于雷, 周中良, 等. 基于变权重伪并行遗传算法的空战机动决策[J]. 飞行力学, 2012, 30(5): 470-474. |
| ZHANG T, YU L, ZHOU Z L, et al. Decision-making for aircombat maneuvering based on variable weight pseudo-parallel genetical algorithm[J]. Flight Dynamics, 2012, 30(5): 470-474 (in Chinese). | |
| 84 | BURGIN G H, SIDOR L B. Rule-based air combat simulation: NASA-CR-4160[R]. Washington,D.C.: National Aeronautics and Space Administration, 1988. |
| 85 | 王锐平, 高正红. 无人机空战仿真中基于机动动作库的决策模型[J]. 飞行力学, 2009, 27(6): 72-75, 79. |
| WANG R P, GAO Z H. Research on decision system in air combat simulation using maneuver library[J]. Flight Dynamics, 2009, 27(6): 72-75, 79 (in Chinese). | |
| 86 | 王刚, 雷英杰, 何晶. 空战决策指挥引导专家系统[J]. 空军工程大学学报(自然科学版), 2002, 3(1): 11-13. |
| WANG G, LEI Y J, HE J. Interception guidance expert system for airfight decision[J]. Journal of Air Force Engineering University (Natural Science Edition), 2002, 3(1): 11-13 (in Chinese). | |
| 87 | 谭目来, 丁达理, 谢磊, 等. 基于模糊专家系统与IDE算法的UCAV逃逸机动决策[J]. 系统工程与电子技术, 2022, 44(6): 1984-1993. |
| TAN M L, DING D L, XIE L, et al. UCAV escape maneuvering decision based on fuzzy expert system and IDE algorithm[J]. Systems Engineering and Electronics, 2022, 44(6): 1984-1993 (in Chinese). | |
| 88 | QIAN C X, ZHANG X B, LI L, et al. H3E: Learning air combat with a three-level hierarchical framework embedding expert knowledge[J]. Expert Systems with Applications, 2024, 245: 123084. |
| 89 | CHAI R Q, TSOURDOS A, SAVVARIS A, et al. Solving constrained trajectory planning problems using biased particle swarm optimization[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(3): 1685-1701. |
| 90 | RUAN W Y, DUAN H B, DENG Y M. Autonomous maneuver decisions via transfer learning pigeon-inspired optimization for UCAVs in dogfight engagements[J]. IEEE/CAA Journal of Automatica Sinica, 2022, 9(9): 1639-1657. |
| 91 | TAN M L, TANG A D, DING D L, et al. Autonomous air combat maneuvering decision method of UCAV based on LSHADE-TSO-MPC under enemy trajectory prediction[J]. Electronics, 2022, 11(20): 3383. |
| [1] | Guanghui WU, Jing WANG, Hairun XIE, Tuliang MA, Qiang MIAO, Jixin XIANG, Miao ZHANG. Data and knowledge-enabled intelligent aerodynamic design for civil aircraft [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531485-531485. |
| [2] | Yu ZENG, Hongbo WANG, Chengyue LIAN, Yixin YANG, Dapeng XIONG, Mingbo SUN, Weidong LIU. Applicability analysis of two improved methods of SST turbulence model [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730574-730574. |
| [3] | Dapeng ZHOU, Xiaolei QU. Knowledge-based intelligent pigeon-inspired optimization of carrier-based aircraft landing control [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(S1): 730801-730801. |
| [4] | Qi WANG, Long WU, Zhen LIU, Jianxia LIU, Liang XIA. Topology optimization design of thermoelastic multi-configuration gradient lattice structures [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(23): 230367-230367. |
| [5] | Zhen YANG, Lin LI, Shiyuan CHAI, Jichuan HUANG, Haiyin PIAO, Deyun ZHOU. Autonomous evasive maneuver method for unmanned combat aerial vehicle in air combat with multiple tactical requirements [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 630629-630629. |
| [6] | Wentao LI, Feng FANG, Zhenya WANG, Yichao ZHU, Dongliang PENG. Intelligent maneuvering decision-making in two-UCAV cooperative air combat based on improved MADDPG with hybrid hyper network [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 529460-529460. |
| [7] | Lizhuo DONG, Siqi ZHANG, Zhao ZHANG, Baohai WU. Prediction method of blade machining deformation driven by mechanism⁃data hybrid [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(13): 629037-629037. |
| [8] | Ximing CUI, Zhipeng QIU, Jia WEI, Chi ZHANG, Kai SONG, Zhe LI, Shupeng WANG. Data-driven method for characterization of structural steel surface stress of magnetic Barkhausen noise [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(8): 427237-427237. |
| [9] | WU Baohai, ZHANG Yang, ZHENG Zhiyang, ZHANG Ying, ZHANG Siqi. Review and prospects of feedrate optimization in CNC machining [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(4): 525467-525467. |
| [10] | JIANG Lijian, ZHAO Wenwen, CHEN Weifang, YAO Shaobo. Data-driven rarefied nonlinear constitutive relations based on rotation invariants [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(12): 126256-126256. |
| [11] | LI Tingwei, ZHANG Mang, ZHAO Wenwen, CHEN Weifang, JIANG Lijian. Machine learning method for correction of rarefied nonlinear constitutive relations [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(4): 524386-524386. |
| [12] | YU Min, LUO Jianjun, WANG Mingming. Real-time motion prediction of space tumbling targets based on machine learning [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324149-324149. |
| [13] | ZOU Shiyu, LI Fuming, XIE Aiping, ZHOU Tao, LIU Peng. Resource allocation based on improved fireworks algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(12): 324716-324716. |
| [14] | ZHANG Yizhi, CHENG Cheng, FAN Yitong, LI Gaohua, LI Weipeng. Data-driven correction of turbulence model with physics knowledge constrains in channel flow [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(3): 123282-123282. |
| [15] | WU Heng, LI Benwei, ZHANG Yun, YANG Xinyi. Dynamic model identification of starting process of a turbo-shaft engine based on QPSO-ELM [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(11): 322251-322261. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

