Acta Aeronautica et Astronautica Sinica ›› 2025, Vol. 46 ›› Issue (1): 630750.doi: 10.7527/S1000-6893.2024.30750
• Special Topic: Flexible Aerodynamic Deceleration Technologies • Previous Articles Next Articles
Haitao WANG1(), Jiangli LEI2, Wei RONG2
Received:
2024-05-30
Revised:
2024-07-15
Accepted:
2024-07-24
Online:
2025-01-15
Published:
2024-07-31
Contact:
Haitao WANG
E-mail:wanghaitao@nudt.edu.cn
Supported by:
CLC Number:
Haitao WANG, Jiangli LEI, Wei RONG. Rigid-flexible coupling dynamic modeling for parachute cluster deceleration system[J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630750.
Table 2
Comparison of model degrees of freedom between parachute cluster and single parachute systems
运行阶段 | 群伞系统 | 单伞系统 | ||
---|---|---|---|---|
自由度 | 模型组成 | 自由度 | 模型组成 | |
单舱运行阶段 | 6 | 返回舱刚体模型 | 6 | 返回舱刚体模型 |
弹射拉直阶段 | 12 | 返回舱刚体模型+2个质点伞包模型 | 9 | 返回舱刚体模型+质点伞包模型 |
减速伞开伞充气和下降(集中吊挂)阶段 | 18 | 返回舱刚体模型+2个减速伞充气开伞模型 | 12 | 返回舱刚体模型+减速伞充气开伞模型 |
减速伞拉主伞阶段 | 21 | 返回舱刚体模型+2个减速伞模型+3个主伞包质点模型 | 15 | 返回舱刚体模型+减速伞模型+主伞包质点模型 |
主伞开伞充气和下降(集中吊挂)阶段 | 24 | 返回舱刚体模型+3个主伞开伞充气模型 | 12 | 返回舱刚体模型+主伞开伞充气模型 |
转化吊挂阶段 | 24 | 返回舱刚体模型+3个充满主伞模型 | 12 | 返回舱刚体模型+充满主伞模型 |
稳定下降(分散吊挂)阶段 | 27 | 返回舱刚体模型+吊挂质点模型+3个充满降落伞模型 | 15 | 返回舱刚体模型+吊挂质点模型+充满降落伞模型 |
1 | 荣伟, 王海涛. 航天器回收着陆技术[M]. 北京: 中国宇航出版社, 2019. |
RONG W, WANG H T. Spacecraft recovery landing technology[M]. Beijing: Aerospace Press of China, 2019 (in Chinese). | |
2 | 王海涛, 郭鹏, 荣伟. 航天器降落伞减速系统动力学[M]. 北京: 科学出版社, 2023. |
WANG H T, GUO P, RONG W. Dynamics of spacecraft parachute deceleration system[M]. Beijing: Science Press, 2023 (in Chinese). | |
3 | WOLF D. Dynamic stability of a nonrigid parachute and payload system[J]. Journal of Aircraft, 1971, 8(8): 603-609. |
4 | IBRAHIM S K, ENGDAHL R A. Parachute dynamics and stability analysis: CR-120326[R]. Washington,D.C.: NASA, 1974. |
5 | 程文科. 一般降落伞-载荷系统动力学及其动稳定性分析[D]. 长沙: 国防科技大学, 2000. |
CHENG W K. Dynamic stability analysis of the general parachute and load system[D]. Changsha: National University of Defense Technology, 2000 (in Chinese). | |
6 | RAISZADEH B, QUEEN E M. Virginia partial validation of multibody program to optimize simulated trajectories II (POST II) parachute simulation with interacting forces: TM-2002-211634[R]. Washington,D.C.: NASA, 2002. |
7 | RAISZADEH B. Multibody parachute flight simulations for planetary entry trajectories using “Equilibrium Points”[C]∥13th AAS/AIAA Space Flight Mechanics Meeting.Reston: AIAA, 2003. |
8 | WOLF D, SPAHR H. A parachute cluster dynamic analysis[C]∥Proceedings of the 5th Aerodynamic Deceleration Systems Conference. Reston: AIAA, 1975. |
9 | WOLF D. A dynamic analysis of the SRB parachute system[C]∥Proceedings of the 11th Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 1991. |
10 | WOLF D, HEINDEL K. A steady rotation motion for a cluster of parachutes[C]∥Proceedings of the 18th AIAA Aerodynamic Decelerator Systems Technology Conference and Seminar. Reston: AIAA, 2005. |
11 | YASMIN A, BRUCE S. Orion multi-purpose crew vehicle solving and mitigating the two main cluster pendulum problem[C]∥24th AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2017. |
12 | MACHIN R, RAY E. Pendulum motion in main parachute clusters[C]∥23rd AIAA Aerodynamic Decelerator Systems Technology Conference. Reston: AIAA, 2015. |
13 | RAY E. Reconstruction of Orion EDU parachute inflation loads[C]∥AIAA Aerodynamic Decelerator Systems (ADS) Conference. Reston: AIAA, 2013. |
14 | RAY E. Updated reconstruction methods for modeling Orion parachute loads[C]∥AIAA Aviation 2019 Forum. Reston: AIAA, 2019. |
15 | DANIEL G M, EUGENE A M, PEI J, et al. Application of system identification to parachute modeling:TM-2019-220410[R]. Washington, D.C.: NASA, 2019. |
16 | 柯鹏, 杨春信, 杨雪松, 等. 重型货物空投系统过程仿真及特性分析[J]. 航空学报, 2006, 27(5): 856-860. |
KE P, YANG C X, YANG X S, et al. System simulation and analysis of heavy cargo airdrop system[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5): 856-860 (in Chinese). | |
17 | 宁雷鸣. 物-伞系统动力学高保真数值仿真技术及流固耦合算法研究[D]. 南京: 南京航空航天大学, 2018. |
NING L M. Research on high fidelity numerical simulation technology and fluid-structure coupling algorithm of object-parachute system dynamics[D].Nanjing: Nanjing University of Aeronautics and Astronautics, 2018 (in Chinese). | |
18 | 雷江利, 牟金岗, 赵广秀, 等. 新一代载人飞船试验船回收着陆系统任务特点分析[J]. 国际太空, 2020(9): 6. |
LEI J L, MOU J G, ZHAO G X, et al. Analysis of the recovery and landing system mission characteristics for the new generation manned spacecraft test capsule [J]. Space International, 2020(9): 6 (in Chinese). | |
19 | 洪嘉振, 刘铸永. 变拓扑柔性多体系统接触碰撞动力学研究[J]. 动力学与控制学报, 2013, 11(1): 5-11. |
HONG J Z, LIU Z Y. Study on contact/impact dynamics of flexible multibody system with topology variable[J]. Journal of Dynamics and Control, 2013, 11(1): 5-11 (in Chinese). | |
20 | 董富祥, 洪嘉振. 多体系统动力学碰撞问题研究综述[J]. 力学进展, 2009, 39(3): 352-359. |
DONG F X, HONG J Z. Review of impact problem for dynamics of multibody system[J]. Advances in Mechanics, 2009, 39(3): 352-359 (in Chinese). | |
21 | 代雨柔, 李健, 薛晓鹏, 等. 超声速下盘缝带伞不同收口方式的气动特性[J]. 航空学报, 2024, 45(7): 68-80. |
DAI Y R, LI J, XUE X P, et al. Aerodynamic characteristics of supersonic disk-gap-band parachute with different reefing ways[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(7): 68-80 (in Chinese). | |
22 | 包文龙, 贾贺, 薛晓鹏, 等. 开 “窗” 结构对环帆伞开伞过程影响[J]. 航空学报, 2023, 44(5): 171-181. |
BAO W L, JIA H, XUE X P, et al. Influence of ‘windows’ structure on inflation process of ringsail parachute[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(5): 171-181 (in Chinese). | |
23 | 王海涛, 秦子增. 基于遗传算法的大型降落伞气动力参数辨识[J]. 国防科技大学学报, 2010, 32(1): 28-33. |
WANG H T, QIN Z Z. Aerodynamic parameter estimation of large parachute based on genetic algorithm[J]. Journal of National University of Defense Technology, 2010, 32(1): 28-33 (in Chinese). | |
24 | SUNDBERG W D, MCBRIDE D D, GWINN K W. Parachute system design, analysis and simulation tool[C]∥12th AIAA Aerodynamic Decelerator Systems Technical Conference. Reston: AIAA, 1993. |
25 | BALARAM J, AUSTIN R, BANERJEE P, et al. DSENDS-A high-fidelity dynamics and spacecraft simulator for entry, descent and surface landing[C]∥Proceedings, IEEE Aerospace Conference. Piscataway: IEEE Press, 2002: 7. |
26 | 罗亚中, 周建平. 航天任务分析与设计工业软件发展战略分析[J]. 力学与实践, 2024, 46(2): 241-249. |
LUO Y Z, ZHOU J P. Development strategic analysis for space mission analysis and design industrial software[J]. Mechanics in Engineering, 2024, 46(2): 241-249 (in Chinese). |
[1] | Yu LIU, Miao ZHAO, Qingsong HE. Influence of surface deformation of inflatable deceleration structure on thermochemical non-equilibrium flow [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(1): 630727-630727. |
[2] | Shengxiang TONG, Zhiwei SHI, Xi GENG, Lishuang WANG, Zhikun SUN, Qichang CHEN. Combinable samara aircraft and controlled separation technique [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(6): 629590-629590. |
[3] | Shuangxi LIU, Zehuai LIN, Wei LIU, Binbin YAN, Wei HUANG. Transition mode control scheme of tilt rotor UAV based on INDI [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(17): 529685-529685. |
[4] | Qingfeng ZHAO, Zhou ZHOU, Minghao LI, De XU. Propulsion/aerodynamic coupling modeling for distributed-propulsion-wing with induced wing configuration [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(10): 129252-129252. |
[5] | Bin LIU, Jing XU, Meiling HUO, Xueying CUI, Xiufeng XIE, Donghui YANG, Jia WANG. Remaining useful life prediction based on multi-scale adaptive attention network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2023, 44(5): 226918-226918. |
[6] | Zhi ZHANG, Han YUAN, Wanqing ZHANG. Powered deceleration guidance method based on gravity-turn analytical solutions [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(23): 628483-628483. |
[7] | Huailu LI, Xu WANG, Xiao WANG, Tong ZHAO, Weiwei ZHANG. Aerodynamic modeling and flight simulation of maneuver flight at high angle of attack [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(19): 128410-128410. |
[8] | Zhiguang SHI, Yujie YANG, Zongyu ZUO. Multi-element coupled modeling and simulation for multi-capsule near-space airships [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(16): 228451-228451. |
[9] | ZHANG Baozhen, WANG Hanping, XU Feng, WU Zhiqing. Simulation speed-up and accuracy compensation measures for adjusting mechanism of variable stator vane [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(9): 226034-226034. |
[10] | WANG Weimin, CHEN Ziwen, ZHANG Xulong, CHEN Kang. Fault diagnosis method of rotor rub impact based on blade tip timing [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(8): 625031-625031. |
[11] | DU Xiaoqiong, LI Bin, LUO Linyin. Braking vibration behavior of high strut landing gear of amphibious aircraft [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(6): 526199-526199. |
[12] | DING Xilun, JIN Xueying. Research progress of rotorcraft UAV interactive manipulation dynamic modeling [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(10): 527388-527388. |
[13] | ZHANG Zhe, WANG Hanping, JIN Wendong, ZHANG Baozhen, CHENG Mengwen. Fast analysis method of deflection efficiency for thrust axial-symmetric vectoring exhaust nozzle [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(7): 224429-224429. |
[14] | HE Wei, FANG Yongchun, LIANG Xiao, ZHANG Peng. Design and implementation of a 2-DOF aerial manipulation system [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2021, 42(2): 324280-324280. |
[15] | SHEN Lin, HUANG Da, WU Genxing, ZHAN Jingxia. Unsteady aerodynamic modeling for fighter configuration at high angles of attack [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2020, 41(6): 523440-523440. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341