Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (20): 630678.doi: 10.7527/S1000-6893.2024.30678
• Aeronautics Computing and Simulation Technique • Previous Articles
Yuexing WANG1, Qiyang ZHOU1, Minqian LI2, Weixing MIAO1, Yandi LU2, Xianliang GE2()
Received:
2024-05-14
Revised:
2024-06-17
Accepted:
2024-08-23
Online:
2024-09-19
Published:
2024-09-09
Contact:
Xianliang GE
E-mail:0918082@zju.edu.cn
Supported by:
CLC Number:
Yuexing WANG, Qiyang ZHOU, Minqian LI, Weixing MIAO, Yandi LU, Xianliang GE. Prototyping of UAV swarm control software[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(20): 630678.
Table 2
Usability issues identified by heuristic evaluation
可用性指标 | 得分 | 严重程度 | 可能存在的可用性问题 | 可用性建议 |
---|---|---|---|---|
视觉告警显著性 | 3.67 | 中等 | 告警信息不够显著,字号、颜色、位置、形式、突显等方面可改善 | 采用更合适的方式显示告警,避免造成遗漏忽视或醒目干扰;可多模态(视听)方式呈现 |
反馈信息可控性 | 4 | 较轻 | 界面信息量及内容无法自定义选择控制 | 可补充自定义功能;可结合状态识别技术做自适应界面;信息量与呈现方式做匹配调整;对于多步骤操作流程,状态和导航信息应放置到更容易注意到的位置 |
布局合理性 | 4.17 | 较轻 | 布局属于固定式,但可能出现不同信息量、呈现方式、呈现位置需求;导航、状态信息不醒目 | |
智能防错 | 4.17 | 较轻 | 较少的错误预防设计或形式(仅AI和告警栏)不够醒目 | 通过告警或者控件、页面不可用等形式在错误设置前直接避免操作 |
1 | GERTLER J. U.S. Unmanned aerial systems[R]. Congressional Research Service, 2012. |
2 | HOBBS A, LYALL B. Human factors guidelines for unmanned aircraft systems[J]. Ergonomics in Design: The Quarterly of Human Factors Applications, 2016, 24(3): 23-28. |
3 | YUAN C, ZHANG Y M, LIU Z X. A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques[J]. Canadian Journal of Forest Research, 2015, 45(7): 783-792. |
4 | DIXON S R, WICKENS C D, CHANG D. Mission control of multiple unmanned aerial vehicles: A workload analysis[J]. Human Factors, 2005, 47(3): 479-487. |
5 | SKOROBOGATOV G, BARRADO C, SALAMÍ E. Multiple UAV systems: A survey[J]. Unmanned Systems, 2020, 8(2): 149-169. |
6 | U. S. Army UAS Center of Excellence. U.S. Army unmanned aircraft systems roadmap 2010-2035[R]. U. S. Army UAS Center of Excellence (ATZQ-CDI-C) Bldg 5000, Lucky Star Street, 2010. |
7 | LIM Y, GARDI A, SABATINI R. UAS human factors and human-machine interface design[M]∥ESTRELA V V, HEMANTH J, SAOTOME O, et al, eds. Imaging and Sensing for Unmanned Aircraft Systems: Volume 2: Deployment and Applications, 2020: 23-48. |
8 | PAJARES G. Overview and current status of remote sensing applications based on unmanned aerial vehicles (UAVs)[J]. Photogrammetric Engineering & Remote Sensing, 2015, 81(4): 281-330. |
9 | TEDIM F, LEONE V, AMRAOUI M, et al. Defining extreme wildfire events: Difficulties, challenges, and impacts[J]. Fire, 2018, 1(1): 9. |
10 | BAILON-RUIZ R, LACROIX S. Wildfire remote sensing with UAVs: A review from the autonomy point of view[C]∥2020 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2020: 412-420. |
11 | 何文志. 无人机地面控制站软件通用化研究[J]. 现代电子技术, 2023, 46(20): 95-100. |
HE W Z. Research on software universalization of UAV ground control station[J]. Modern Electronics Technique, 2023, 46(20): 95-100 (in Chinese). | |
12 | 屈旭涛, 庄东晔, 谢海斌. “低慢小” 无人机探测方法[J]. 指挥控制与仿真, 2020, 42(2): 128-135. |
QU X T, ZHUANG D Y, XIE H B. Detection methods for low-slow-small (LSS) UAV[J]. Command Control & Simulation, 2020, 42(2): 128-135 (in Chinese). | |
13 | 李奇. 飞行器通用地面控制系统体系架构研究[J]. 无线电工程, 2015, 45(5): 4-7, 37. |
LI Q. Research on general ground control system architecture of aerial vehicle[J]. Radio Engineering, 2015, 45(5): 4-7, 37 (in Chinese). | |
14 | 刘科. 无人机通用地面站软件的设计与实现[D]. 南昌: 南昌航空大学, 2013. |
LIU K. Design and implementation of UAV universal ground station software[D]. Nanchang: Nanchang Hangkong University, 2013 (in Chinese). | |
15 | 王林, 张庆杰, 朱华勇. 支持联合作战的UAS通用地面控制站研究[J]. 系统仿真学报, 2008, 20(22): 6171-6175. |
WANG L, ZHANG Q J, ZHU H Y. Research of UAS common ground control station with support of joint operations[J]. Journal of System Simulation, 2008, 20(22): 6171-6175 (in Chinese). | |
16 | 陈庆锋. 通用无人机地面控制站研究与设计[J]. 电子测量技术, 2014, 37(5): 4-8. |
CHEN Q F. Research and design of UAV common ground control station[J]. Electronic Measurement Technology, 2014, 37(5): 4-8 (in Chinese). | |
17 | 许为, 葛列众, 高在峰. 人-AI交互:实现“以人为中心AI”理念的跨学科新领域[J]. 智能系统学报, 2021, 16 (4): 605-621. |
XU W, GE L Z, GAO Z F. Human-AI interaction: An emerging interdisciplinary domain for enabling human-centered AI[J]. CAAI Transactions on Intelligent Systems, 2021, 16 (4): 605-621 (in Chinese). | |
18 | XU W. From automation to autonomy and autonomous vehicles[J]. Interactions, 2021, 28(1): 48-53. |
19 | LIM Y, RANASINGHE K, GARDI A, et al. Human-machine interfaces and interactions for multi UAS operations[C]∥Proceedings of the 31th Congress of the International Council of the Aeronautical Sciences (ICAS 2018), 2019. |
20 | SADRAEY M H. Design of unmanned aerial systems[M]. Hoboken: Wiley, 2020. |
21 | KELLER J. DARPA to develop swarming unmanned vehicles for better military reconnaissance[J]. Military & Aerospace Electronics, 2017, 28(2): 4-6. |
22 | LIM Y, PONGSAKORNSATHIEN N, GARDI A, et al. Adaptive human-robot interactions for multiple unmanned aerial vehicles[J]. Robotics, 2021, 10(1): 12. |
23 | SABATINI R, ROY A, BLASCH E, et al. Avionics systems panel research and innovation perspectives[J]. IEEE Aerospace and Electronic Systems Magazine, 2020, 35(12): 58-72. |
24 | FORTMANN F, MENGERINGHAUSEN T. Development and evaluation of an assistant system to aid monitoring behavior during multi-UAV supervisory control: experiences from the D3CoS project[C]∥Proceedings of the 2014 European Conference on Cognitive Ergonomics. New York: ACM, 2014: 1–8. |
25 | CUMMINGS M L, MITCHELL P J. Automated scheduling decision support for supervisory control of multiple UAVs[J]. Journal of Aerospace Computing, Information, and Communication, 2006, 3(6): 294-308. |
26 | BRZEZINSKI A, SEYBOLD A, CUMMINGS M. Decision support visualizations for schedule management of multiple unmanned aerial vehicles[C]∥Proceedings of the AIAA Infotech@Aerospace 2007 Conference and Exhibit. Reston: AIAA, 2007. |
27 | FUCHS C, BORST C, DE CROON G C H E, et al. An ecological approach to the supervisory control of UAV swarms[J]. International Journal of Micro Air Vehicles, 2014, 6(4): 211-229. |
28 | BOCANIALA C D, SASTRY V V S S. On enhanced situational awareness models for Unmanned Aerial Systems[C]∥2010 IEEE Aerospace Conference. Piscataway: IEEE Press, 2010: 1-14. |
29 | LIM Y X, SAMREELOY T, CHANTARAVIWAT C, et al. Cognitive human-machine interfaces and interactions for multi-UAV operations[C]∥18th Australian International Aerospace Congress. 2019. |
30 | PLANKE L J, GARDI A, SABATINI R, et al. Online multimodal inference of mental workload for cognitive human machine systems[J]. Computers, 2021, 10(6): 81. |
31 | ENDSLEY M R, KABER D B. Level of automation effects on performance, situation awareness and workload in a dynamic control task[J]. Ergonomics, 1999, 42(3): 462-492. |
32 | PONGSAKORNSATHIEN N, GARDI A, SABATINI R, et al. Human-machine interactions in very-low-level UAS operations and traffic management[C]∥2020 AIAA/IEEE 39th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2020: 1-8. |
33 | WOHLEBER R W, MATTHEWS G, LIN J C, et al. Vigilance and automation dependence in operation of multiple unmanned aerial systems (UAS): A simulation study[J]. Human Factors, 2019, 61(3): 488-505. |
34 | RUFF H A, NARAYANAN S, DRAPER M H. Human interaction with levels of automation and decision-aid fidelity in the supervisory control of multiple simulated unmanned air vehicles[J]. Presence, 2002, 11(4): 335-351. |
35 | CALHOUN G L, RUFF H A, DRAPER M H, et al. Automation-level transference effects in simulated multiple unmanned aerial vehicle control[J]. Journal of Cognitive Engineering and Decision Making, 2011, 5(1): 55-82. |
36 | YAO K L, XU Y H, LI H, et al. Leveraging partially overlapping channels for intra- and inter-coalition communication in cooperative UAV swarms[J]. Science China Information Sciences, 2021, 64(4): 140305. |
37 | MANATHARA J G, SUJIT P B, BEARD R W. Multiple UAV coalitions for a search and prosecute mission[J]. Journal of Intelligent & Robotic Systems, 2011, 62(1): 125-158. |
38 | ALI S A, GAO X G, FU X W. Resource match cost based multi-UAV decentralized coalition formation in an unknown region[C]∥2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST). Piscataway: IEEE Press, 2017: 297-304. |
39 | KENT T, RICHARDS A, JOHNSON A. Homogeneous agent behaviours for the multi-agent simultaneous searching and routing problem[J]. Drones, 2022, 6(2): 51. |
40 | ALFEO A L, CIMINO M G C A, DE FRANCESCO N, et al. Swarm coordination of mini-UAVs for target search using imperfect sensors[J]. Intelligent Decision Technologies, 2018, 12(2): 149-162. |
41 | SHANMUGAVEL M, TSOURDOS A, WHITE B, et al. Co-operative path planning of multiple UAVs using Dubins paths with clothoid arcs[J]. Control Engineering Practice, 2010, 18(9): 1084-1092. |
42 | WEI Y, BLAKE M B, MADEY G R. An operation-time simulation framework for UAV swarm configuration and mission planning[J]. Procedia Computer Science, 2013, 18: 1949-1958. |
43 | DASGUPTA P. A multiagent swarming system for distributed automatic target recognition using unmanned aerial vehicles[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2008, 38(3): 549-563. |
44 | KURIKI Y, NAMERIKAWA T. Formation control with collision avoidance for a multi-UAV system using decentralized MPC and consensus-based control[C]∥2015 European Control Conference (ECC). Piscataway: IEEE Press, 2015: 3079-3084. |
45 | BURSTON M, RANASINGHE K, GARDI A, et al. Design principles and digital control of advanced distributed propulsion systems[J]. Energy, 2022, 241: 122788. |
46 | RANASINGHE K, BIJJAHALLI S, GARDI A, et al. Intelligent health and mission management for multicopter UAS integrity assurance[C]∥ 2021 IEEE/AIAA 40th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2021: 1-9. |
47 | RANASINGHE K, KAPOOR R, GARDI A, et al. Vehicular sensor network and data analytics for a health and usage management system[J]. Sensors, 2020, 20(20): 5892. |
48 | SABATINI R, KRAMER K A, BLASCH E, et al. From the editors of the special issue on avionics systems: Future challenges[J]. IEEE Aerospace and Electronic Systems Magazine, 2021, 36(4): 5-6. |
49 | BIJJAHALLI S, SABATINI R, GARDI A. Advances in intelligent and autonomous navigation systems for small UAS[J]. Progress in Aerospace Sciences, 2020, 115: 100617. |
50 | TERWILLIGER B A, ISON D C, VINCENZI D A, et al. Advancement and application of unmanned aerial system human-machine-interface (HMI) technology[M]∥ Lecture Notes in Computer Science. Cham: Springer International Publishing, 2014: 273-283. |
51 | FRIEDRICH M, LIEB J. A novel human machine interface to support supervision and guidance of multiple highly automated unmanned aircraft[C]∥2019 IEEE/AIAA 38th Digital Avionics Systems Conference (DASC). Piscataway: IEEE Press, 2019: 1-7. |
52 | VINCENZI D A, TERWILLIGER B A, ISON D C. Unmanned aerial system (UAS) human-machine interfaces: New paradigms in command and control[J]. Procedia Manufacturing, 2015, 3: 920-927. |
53 | LIU J, GARDI A, RAMASAMY S, et al. Cognitive pilot-aircraft interface for single-pilot operations[J]. Knowledge-Based Systems, 2016, 112: 37-53. |
54 | PESCHEL J M, MURPHY R R. On the human-machine interaction of unmanned aerial system mission specialists[J]. IEEE Transactions on Human-Machine Systems, 2013, 43(1): 53-62. |
55 | YEH M, SWIDER C, JO Y J, et al. Human factors considerations in the design and evaluation of flight deck displays and controls: Version 2.0: DOT/FAA/TC-16/56, DOT-VNTSC-FAA-17-02 [R]. Washington, D.C.: U.S. Department of Transportation Federal Aviation Administration Human Factors Division (ANG-C1), 2016. |
56 | LIM Y, GARDI A, SABATINI R, et al. Avionics human-machine interfaces and interactions for manned and unmanned aircraft[J]. Progress in Aerospace Sciences, 2018, 102: 1-46. |
57 | KIDWELL B, CALHOUN G L, RUFF H A, et al. Adaptable and adaptive automation for supervisory control of multiple autonomous vehicles[J]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 2012, 56(1): 428-432. |
58 | SABATINI R. The future of avionics systems[C]∥IEEE AESS 2021 Distinguished Lecturer Webinar Series, Advances in CNS/ATM and Avionics Systems, 2021. |
59 | STROUMTSOS N, GILBREATH G, PRZYBYLSKI S. An intuitive graphical user interface for small UAS[C]∥ SPIE Proceedings Unmanned Systems Technology XV, 2013. |
60 | TOŽIČKA J, BALATA J, MIKOVĚC Z. Diverse trajectory planning for UAV control displays[C]∥Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems. Richland: International Foundation for Autonomous Agents and Multiagent Systems, 2013: 1411–1412. |
61 | 吴慧垚, 徐杰, 葛贤亮. 基于认知架构的无人机操作员意图预测技术研究[C]∥2019第七届中国指挥控制大会. 北京: 中国指挥与控制学会, 2019: 361-365. |
WU H Y, XU J, GE X L. Research on UAV operator’s intention prediction based on cognitive model[C]∥Proceedings of the 7th China Command and Control Conference 2019. Beijing: Chinese Institute of Command and Control, 2019: 361-365 (in Chinese). | |
62 | 李昱辉, 蒋丰亦, 章豪, 等. 基于意图识别无人机地面站多级人机交互系统研究[C]∥中国航空学会第九届中国航空学会青年科技论坛论. 北京: 中国航空学会, 2020: 720-727. |
LI Y H, JIANG F Y, ZHANG H, et al. Research on multi-level human-computer interaction system of UAV GCS based on intention recognition[C]∥Aeronautical Society of China Proceedings of the Ninth Aviation Society of China Youth Science and Technology Forum. Beijing: Aviation Society of China, 2020: 720-727 (in Chinese). | |
63 | YU Y P, HE D, HUA W D, et al. FlyingBuddy2: A brain-controlled assistant for the handicapped[C]∥Proceedings of the 2012 ACM Conference on Ubiquitous Computing. New York: ACM, 2012: 669-670. |
64 | HARTSON H REX. Human-computer interaction: Interdisciplinary roots and trends[J]. Journal of Systems and Software, 1998, 43(2): 103-118. |
65 | ADELMAN L, RIEDEL S L. Handbook for evaluating knowledge-based systems[M]. Boston: Springer, 1997. |
66 | NIELSEN J, MOLICH R. Heuristic evaluation of user interfaces[C]∥Proceedings of the SIGCHI conference on Human factors in computing systems Empowering people-CHI’90. New York: ACM, 1990: 249–256. |
67 | JEFFRIES R, MILLER J R, WHARTON C, et al. User interface evaluation in the real world: A comparison of four techniques[C]∥Proceedings of the SIGCHI conference on Human factors in computing systems Reaching through technology-CHI’91. New York: ACM, 1991: 119-124. |
68 | NIELSEN J, PHILLIPS V L. Estimating the relative usability of two interfaces: Heuristic, formal, and empirical methods compared[C]∥Proceedings of the SIGCHI conference on Human factors in computing systems-CHI’93. New York: ACM, 1993: 214-221. |
69 | NIELSEN J. Usability engineering[M]. San Francisco: Morgan Kaufmann Publishers Inc., 1994: 19-268. |
70 | PLANKE L J, LIM Y, GARDI A, et al. A cyber-physical-human system for one-to-many UAS operations: Cognitive load analysis[J]. Sensors, 2020, 20(19): 5467. |
71 | 张佳鹏, 赵兴梅, 王兴龙. 无人机地面站静态操作界面人机工效评价[J]. 飞机设计, 2020, 40(4): 49-53, 64. |
ZHANG J P, ZHAO X M, WANG X L. Man-machine ergonomics evaluation of static operation interface of UAV ground station[J]. Aircraft Design, 2020, 40(4): 49-53, 64 (in Chinese). | |
72 | NIELSEN J, LANDAUER T K. A mathematical model of the finding of usability problems[C]∥Proceedings of the SIGCHI conference on Human factors in computing systems-CHI’93. New York: ACM, 1993: 206-213. |
[1] | ZHU Bingjie, YANG Xixiang, ZONG Jian'an, DENG Xiaolong. Review of distributed hybrid electric propulsion aircraft technology [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(7): 25556-025556. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341