| 1 |
杨超, 许赟, 谢长川. 高超声速飞行器气动弹性力学研究综述[J]. 航空学报, 2010, 31(1): 1-11.
|
|
YANG C, XU Y, XIE C C. Review of studies on aeroelasticity of hypersonic vehicles[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(1): 1-11 (in Chinese).
|
| 2 |
桂业伟, 刘磊, 魏东. 长航时高超声速飞行器的综合热效应问题[J]. 空气动力学学报, 2020, 38(4): 641-650.
|
|
GUI Y W, LIU L, WEI D. Combined thermal phenomena issues of long endurance hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2020, 38(4): 641-650 (in Chinese).
|
| 3 |
桂业伟. 高超声速飞行器综合热效应问题[J]. 中国科学: 物理学 力学 天文学, 2019, 49: 114702.
|
|
GUI Y W. Combined thermal phenomena of hypersonic vehicle[J]. Scientia Sinica(Physics, Mechanics & Astronomy), 2019, 49: 114702 (in Chinese).
|
| 4 |
LEWIS M T, HICKEY J P. Conjugate heat transfer in high-speed external flows: A review[J]. Journal of Thermophysics and Heat Transfer, 2023, 37(4): 697-712.
|
| 5 |
WIETING A R, HOLDEN M S. Experimental shock-wave interference heating on a cylinder at Mach 6 and 8[J]. AIAA Journal, 1989, 27(11): 1557-1565.
|
| 6 |
DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989, 26(4): 201-209.
|
| 7 |
MILLER B, CROWELL A R, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions[C]∥54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2013.
|
| 8 |
MILLER B A, MCNAMARA J J. Loosely coupled time-marching of fluid-thermal-structural interactions with time-accurate CFD[C]∥Proceedings of the 56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2015.
|
| 9 |
CHEN F, LIU H, ZHANG S T. Time-adaptive loosely coupled analysis on fluid-thermal-structural behaviors of hypersonic wing structures under sustained aeroheating[J]. Aerospace Science and Technology, 2018, 78: 620-636.
|
| 10 |
CHEN F, LIU H, ZHANG S T. Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges[J]. International Journal of Heat and Mass Transfer, 2018, 122: 846-862.
|
| 11 |
MURTY M C, MANNA P, CHAKRABORTY D. Conjugate heat transfer analysis in high speed flows[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(10): 1672-1681.
|
| 12 |
张胜涛, 陈方, 刘洪. 基于多场耦合的飞行器热环境数值分析方法研究[J]. 空气动力学学报, 2014, 32(6): 861-867.
|
|
ZHANG S T, CHEN F, LIU H. Multi-field coupling numerical analysis approach for aerothermal environment of hypersonic vehicles[J]. Acta Aerodynamica Sinica, 2014, 32(6): 861-867 (in Chinese).
|
| 13 |
张胜涛, 陈方, 刘洪. 高超声速进气道前缘流场-热-结构耦合分析[J]. 空气动力学学报, 2017, 35(3): 436-444.
|
|
ZHANG S T, CHEN F, LIU H. Fluid-thermal-structural coupling analysis on leading edge ohypersonic inlets[J]. Acta Aerodynamica Sinica, 2017, 35(3): 436-444 (in Chinese).
|
| 14 |
李芹, 杨肖峰, 董威, 等. 高超声速飞行器表面吸附特性对多相催化过程影响的数值模拟[J]. 上海交通大学学报, 2021, 55(11): 1352-1361.
|
|
LI Q, YANG X F, DONG W, et al. Numerical simulation of influence of adsorption on surface heterogeneous catalysis process of hypersonic vehicles[J]. Journal of Shanghai Jiao Tong University, 2021, 55(11): 1352-1361 (in Chinese).
|
| 15 |
YANG X F, GUI Y W, XIAO G M, et al. Reacting gas-surface interaction and heat transfer characteristics for high-enthalpy and hypersonic dissociated carbon dioxide flow[J]. International Journal of Heat and Mass Transfer, 2020, 146: 118869.
|
| 16 |
王国林, 周印佳, 金华, 等. 催化效应对气动热环境影响的流动-传热耦合数值分析[J]. 实验流体力学, 2019, 33(3): 13-19.
|
|
WANG G L, ZHOU Y J, JIN H, et al. Study on the influence of catalytic effect on the aerothermal environment by the flow-heat transfer coupling numerical analysis[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(3): 13-19 (in Chinese).
|
| 17 |
STERN E C. Microscale modeling of porous thermal protection system materials[D]. Minnesota: University of Minnesota-TwinCitie, 2015: 24-25.
|
| 18 |
WILDER M C, PRABHU D K. Rough-wall turbulent heat transfer experiments in hypersonic free flight[C]∥ AIAA Aviation 2019 Forum. Reston: AIAA, 2019.
|
| 19 |
XU Y J, REN S X, ZHANG W H. Thermal conductivities of plain woven C/SiC composite: Micromechanical model considering PyC interphase thermal conductance and manufacture-induced voids[J]. Composite Structures, 2018, 193: 212-223.
|
| 20 |
GAO X G, HAN X, SONG Y D. X-ray computed tomography based microstructure reconstruction and numerical estimation of thermal conductivity of 2.5D ceramic matrix composite[J]. Ceramics International, 2017, 43(13): 9790-9797.
|
| 21 |
桂业伟, 刘磊, 代光月, 等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报, 2017, 38(7): 020844.
|
|
GUI Y W, LIU L, DAI G Y, et al. Research statusof hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7): 020844 (in Chinese).
|
| 22 |
LIU Y, QU Z G, GUO J, et al. Numerical study on effective thermal conductivities of plain woven C/SiC composites with considering pores in interlaced woven yarns[J]. International Journal of Heat and Mass Transfer, 2019, 140: 410-419.
|
| 23 |
ZENG X S, BROWN L P, ENDRUWEIT A, et al. Geometrical modelling of 3D woven reinforcements for polymer composites: Prediction of fabric permeability and composite mechanical properties[J]. Composites Part A: Applied Science and Manufacturing, 2014, 56: 150-160.
|
| 24 |
WONG C C, LONG A C, SHERBURN M, et al. Comparisons of novel and efficient approaches for permeability prediction based on the fabric architecture[J]. Composites Part A: Applied Science and Manufacturing, 2006, 37(6): 847-857.
|
| 25 |
ZHANG C, WU K F, KONG X Z, et al. The effects of interfacial thermal contact resistance between yarns and matrixes on the thermophysical property of the plain woven C/SiC composite[J]. Applied Thermal Engineering, 2023, 229: 120600.
|
| 26 |
DONG K, LIU K, PAN L J, et al.. Experimental and numerical investigation on the thermal conduction properties of 2.5D angle-interlock woven composites[J]. Composite Structures, 2016, 154: 319-333.
|
| 27 |
DONG K, LIU K, ZHANG Q, et al. Experimental and numerical analyses on the thermal conductive behaviors of carbon fiber/epoxy plain woven composites[J]. International Journal of Heat and Mass Transfer, 2016, 102: 501-517.
|
| 28 |
BIRD R B, STEWART W E, LIGHTFOOT E N. Transport phenomena[M]. New York: John Wiley & Sons, 2007: 265-287.
|
| 29 |
肖光明, 张超, 桂业伟, 等. 基于TLBM-FVM耦合的飞行器舱内热环境跨尺度预测方法[J]. 航空学报, 2021, 42(9): 625710.
|
|
XIAO G M, ZHANG C, GUI Y W, et al. TLBM-FVM cross-scale method for thermal environment prediction of aircraft cabin[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(9): 625710 (in Chinese).
|
| 30 |
杨肖峰, 唐伟, 桂业伟, 等. 探路者号火星探测器气动热和传热耦合分析[J]. 工程热物理学报, 2014, 35(12): 2461-2465.
|
|
YANG X F, TANG W, GUI Y W, et al. Coupled computation of aeroheating and heat transfer for Mars pathfinder entry vehicle[J]. Journal of Engineering Thermophysics, 2014, 35(12): 2461-2465 (in Chinese).
|
| 31 |
杨肖峰, 桂业伟, 刘磊, 等. 表面催化特性对火星进入气固耦合热效应的影响研究[J]. 中国科学: 技术科学, 2018, 48: 939-949.
|
|
YANG X F, GUI Y W, LIU L, et al. Influence of surface catalysis on coupled aerodynamic heating for Mars entries[J]. Scientia Sinica(Technologica), 2018, 48: 939-949 (in Chinese).
|
| 32 |
PAPADOPOULOS P, VENKATAPATHY E, PRABHU D, et al. Current grid-generation strategies and future requirements in hypersonic vehicle design, analysis and testing[J]. Applied Mathematical Modelling, 1999, 23(9): 705-735.
|
| 33 |
MEN’SHOV I S, NAKAMURA Y. Numerical simulations and experimental comparisons for high-speed nonequilibrium air flows[J]. Fluid Dynamics Research, 2000, 27(5): 305-334.
|
| 34 |
张智超, 高振勋, 蒋崇文, 等. 高超声速气动热数值计算壁面网格准则[J]. 北京航空航天大学学报, 2015, 41(4): 594-600.
|
|
ZHANG Z C, GAO Z X, JIANG C W, et al. Grid generation criterions in hypersonic aeroheating computations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(4): 594-600 (in Chinese).
|
| 35 |
NGO I L, PRABHAKAR VATTIKUTI S V, BYON C. Effects of thermal contact resistance on the thermal conductivity of core-shell nanoparticle polymer composites[J]. International Journal of Heat and Mass Transfer, 2016, 102: 713-722.
|