Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (21): 630283.doi: 10.7527/S1000-6893.2024.30283
• Cover article • Previous Articles
Fei TAO1,2,3,4(
), Qingchao SUN5, Huibin SUN6, Xiaokai MU5, He ZHANG1,4, Lukai SONG1, Jianqin ZHU7, Zhi TAO7
Received:2024-02-01
Revised:2024-02-16
Accepted:2024-08-08
Online:2024-11-15
Published:2024-11-20
Contact:
Fei TAO
E-mail:ftao@buaa.edu.cn
Supported by:CLC Number:
Fei TAO, Qingchao SUN, Huibin SUN, Xiaokai MU, He ZHANG, Lukai SONG, Jianqin ZHU, Zhi TAO. Aero-engine digital twin engineering: Connotation and key technologies[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(21): 630283.
Table 1
State-of-the-art of digital twin-based aero-engine design
| 方法或系统 | 技术特征或优缺点 | 文献 |
|---|---|---|
| 数字孪生驱动的产品设计及再设计方法 | 集成设计、制造、运维等全生命周期各阶段数据和经验,为原型迭代设计及再设计优化、设计方案评估和虚拟验证等提供数字孪生模型及数据,以优化产品设计过程 | [ |
| 航空发动机数字工程及“五协同”正向闭环研制方法 | 提出航空发动机数字工程概念,通过整合全生命周期内各阶段数据与模型,达到研制过程中多学科协同、局部整体协同、设计制造协同、虚实试验协同、多主体协同的“五协同”正向闭环研制模式 | [ |
| 航空发动机总体设计数字表征及优化设计方法 | 对航空发动机系统的大小、外形、重量等参数进行虚拟仿真和优化。数值仿真和逆向设计为主要技术途径,但尚未建立设计参数与系统性能的有机联系 | [ |
| 航空发动机气动设计数字表征及优化设计方法 | 基于数字孪生模型优化风扇、压气机、涡轮等零部件的气动性能,以满足航空发动机各部件系统的气动设计要求 | [ |
| 航空发动机热力设计数字孪生模型构建方法 | 融合大数据和有限元分析等技术建立热力学数字孪生模型,跟踪燃烧结果和排放的实时测量值,以满足燃烧室热力学性能和排放合规性等设计要求 | [ |
| 航空发动机可靠性设计虚实映射模型构建方法 | 建立可靠性数字孪生的虚实映射模型,预测和预防各种潜在故障和隐患,提高发动机的可靠性。但当前可靠性试验数据积累不够,仿真精度和置信度仍有待进一步提升 | [ |
| 数字孪生工业平台Predix&虚拟引擎平台GTlab | 基于数字主线整合所有发动机仿真过程中产生的数据、文件,形成统一的数字管理平台 | [ |
| 基于VR的设计环境 | 沉浸式/交互式设计平台 | [ |
Table 2
State-of-the-art of digital twin-based aero-engine manufacturing
| 方法或系统 | 技术特征或优缺点 | 文献 |
|---|---|---|
| 数字孪生驱动的智能制造方法 | 通过构建与物理车间对应的虚拟车间,基于虚实车间的交互迭代,实现对生产要素的分析、评估与预测,以优化生产要素管理、生产活动计划、生产过程控制等制造过程 | [ |
| 孪生数据驱动的航空发动机零件加工方法 | 加工工艺过程复杂、参数类型多、不确定性高,探索了测试与仿真结合的高保真数字孪生模型,但加工技术仍以几何量调控为主,尚未建立加工参数与发动机性能之间的映射关系 | [ |
| 孪生数据驱动的发动机装配方法 | 测试数据和机理结合建立发动机关键零部件装配体数字孪生模型,并进行装配精度及性能分析等,但数字模型与装配过程的动态一致性、装配性能随机性等问题尚未有效解决 | [ |
| 基于AR/VR/MR技术的虚拟制造方法 | 结合数据分析和可视化虚拟制造技术,引导真实加工装配,具有直观性强、辅助决策等特点,但目前尚未全面推广应用 | [ |
Table 3
State-of-the-art of digital twin-based aero-engine experiment, testing and validation
| 方法 | 技术特征或优缺点 | 文献 |
|---|---|---|
| 基于数字孪生的试验测试验证方法 | 研究了覆盖测试前、测试中、测试后三阶段的航空发动机性能数字测试系统性方法,并强调数实融合试验测试验证思想 | [ |
| 航空发动机关键参量数字化测试方法 | 为了提供航空发动机性能相关关键基础数据,物理测试与仿真相结合建立数字化测试模型,但数字空间与物理空间融合、数字驱动的样本空间扩展、多特征参量集成等关键技术尚未有效解决 | [ |
| 航空发动机热力特性数字化试验方法 | 探索了物理与数据融合的发动机性能数字化试验技术,但发动机气动、热力状态等性能测试目前以拟实测试为主,传感器数量和安装位置局限性、测试成本等因素决定了难以获得全景性能数据 | [ |
| 基于数字孪生的航空发动机监测与分析方法 | 发动机试车或者运行过程中数据量大、有效信息提取较难,初步开展了监测和历史数据结合辅助分析,相关技术有待进一步深入探索 | [ |
Table 4
State-of-the-art of digital twin-based aero-engine maintenance
| 方法或系统 | 技术特征或优缺点 | 文献 |
|---|---|---|
| 基于数字孪生的复杂装备故障预测与健康管理方法 | 基于高保真装备数字孪生模型,通过融合模型生成数据与物理装备数据,为故障预测提供支撑,以实现复杂装备故障预测并据此制定维修策略 | [ |
| 基于数字孪生的发动机剩余寿命预测方法 | 基于在线和离线数据进行剩余寿命预测 | [ |
| 基于数字孪生的航空发动机故障诊断方法 | 探究发动机数字孪生故障诊断概念及模式等,但系统架构有待于进一步完善,一系列关键技术有待于深入研究 | [ |
| 航空发动机运维数字孪生系统 | 探索了基于数字孪生的运行及维护系统架构技术,但仍难满足航空发动机高效、高精度故障特征提取及预警需求 | [ |
| 1 | 陶飞, 张辰源, 刘蔚然, 等. 数字工程及十个领域应用展望[J]. 机械工程学报, 2023, 59(13): 193-215. |
| TAO F, ZHANG C Y, LIU W R, et al. Digital engineering and its ten application outlooks[J]. Journal of Mechanical Engineering, 2023, 59(13): 193-215 (in Chinese). | |
| 2 | 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18. |
| TAO F, LIU W R, ZHANG M, et al. Five-dimension digital twin model and its ten applications[J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18 (in Chinese). | |
| 3 | 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J].计算机集成制造系统, 2018, 24(1): 1-18. |
| TAO F, LIU W R, LIU J H, et al. Digital twin and its potential application exploration[J]. Computer Integrated Manufacturing Systems, 2018,24(01):1-18 (in Chinese). | |
| 4 | QI Q, TAO F, HU T, et al. Enabling technologies and tools for digital twin[J]. Journal of Manufacturing Systems, 2021, 58: 3-21. |
| 5 | TAO F, SUN X, CHENG J, et al. makeTwin: A reference architecture for digital twin software platform[J]. Chinese Journal of Aeronautics, 2024, 37(1): 1-18. |
| 6 | 陶飞, 马昕, 胡天亮, 等. 数字孪生标准体系[J].计算机集成制造系统, 2019, 25(10): 2405-2418. |
| TAO F, MA X, HU T L, et al. Research on digital twin standard system[J]. Computer Integrated Manufacturing Systems, 2019, 25(10): 2405-2418 (in Chinese). | |
| 7 | 陶飞, 高鹏飞, 张辰源, 等. 数字试验测试验证: 理论、关键技术及应用探索[J]. 机械工程学报, 2024, 60(15):227-254. |
| TAO F, GAO P F, ZHANG C Y, et al. D-ETV: Digital Experiment, Testing and Verification[J]. Journal of Mechanical Engineering, 60(15): 227-254 (in Chinese). | |
| 8 | 人民日报. 推动质量变革、 效率变革、 动力变革——代表委员谈加快建设质量强国[EB/OL]. [2024-02-27]. |
| 9 | 人民日报. 中共中央关于进一步全面深化改革 推进中国式现代化的决定[EB/OL]. [2024-07-21]. |
| 10 | TAO F, MAN X, LIU W, engineering Digital : State-of-the-art and perspectives[J]. Digital Engineering, 2024, 1: 100007. |
| 11 | 陶飞, 张辰源, 张贺, 等. 未来装备探索: 数字孪生装备[J]. 计算机集成制造系统, 2022, 28(1): 1-16. |
| TAO F, ZHANG C Y, ZHANG H, et al. Future equipment exploration: digital twin equipment[J]. Computer Integrated Manufacturing Systems, 2022, 28(1): 1-16 (in Chinese). | |
| 12 | 郭东明. 高性能制造[J]. 机械工程学报, 2022, 58(21): 225-242. |
| GUO D M. High performance manufacturing[J]. Journal of Mechanical Engineering, 2022, 58(21): 225-242 (in Chinese). | |
| 13 | TAO F, QI Q. Make more digital twins[J]. Nature, 2019, 573(7775): 490-491. |
| 14 | TAO F, ZHANG H, ZHANG C Y. Advancements and challenges of digital twins in industry[J]. Nature Computational Science, 2024, 4(3): 169-177. |
| 15 | TAO F, LIU A, HU T. Digital twin driven smart design[M]. Academic Press, 2020. |
| 16 | TAO F, SUI F, LIU A, et al. Digital twin-driven product design framework[J]. International Journal of Production Research, 2019, 57(12): 3935-3953. |
| 17 | 黄维娜, 黎方娟, 祁宏斌. 航空发动机数字工程初步研究与发展思考[J]. 航空学报, 2024, 45(5): 529693. |
| HUANG W N, LI F J, QI H B. Preliminary investigation and thoughts on aero-engine digital engineering development[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(5): 529693 (in Chinese). | |
| 18 | 刘大响, 金捷, 刘邓欢. 数值仿真技术在航空动力研制中的地位和作用[J].航空动力学报, 2022, 37(10): 2017-2024. |
| LIU D X, JIN J, LIU D H. Position and function of numerical simulation technology in aero-engine development[J]. Journal of Aerospace Power, 2022, 37(10): 2017-2024 (in Chinese). | |
| 19 | 胡忠志, 曹文宇, 何皑, 等 .数字发动机技术现状、挑战及关键问题[J]. 航空制造技术, 2023, 66(21): 22-3. |
| HU Z Z, CAO W Y, HE A, et al. Digital engine technology status, challenges and key issues[J]. Aeronautical Manufacturing Technology, 2023, 66(21): 22-33 (in Chinese). | |
| 20 | 王乐, 周军, 崔艳林. 数字孪生在航空发动机领域的应用分析[J]. 航空动力, 2020(5): 63-66. |
| WANG L, ZHOU J, CUI Y L. Application analysis of digital twins in the field of aircraft engines [J]. Aviation Power, 2020(5): 63-66 (in Chinese). | |
| 21 | 尹泽勇, 米栋, 张立章, 等. 航空动力系统整机多学科设计优化方法[J]. 航空动力学报, 2022, 37(10):2025-2045. |
| YIN Z Y, MI D, ZHANG L Z, et al. Multidisciplinary design optimization method of overall aircraft power system[J]. Journal of Aerospace Power, 2022, 37(10): 2025-2045 (in Chinese). | |
| 22 | XU Z X, JI F, DING S, et al. Digital twin-driven optimization of gas exchange system of 2-stroke heavy fuel aircraft engine[J]. Journal of Manufacturing Systems, 2021, 58: 132-145. |
| 23 | ELLIS M, BOJDO N, FILIPPONE A, et al. Monte Carlo predictions of aero-engine performance degradation due to particle ingestion[J]. Aerospace, 2021, 8(6): 146. |
| 24 | 刘魁, 刘婷, 魏杰, 等. 数字孪生在航空发动机可靠性领域的应用探索[J]. 航空动力, 2019(4): 61-64. |
| LIU K, LIU T, WEI J, et al. Digital twin and its potential application in the field of aero engine reliability[J]. Aerospace Power, 2019(4): 61-64 (in Chinese). | |
| 25 | 任祝寅, 周华, 张健, 等. 数字孪生在航空发动机燃烧室设计阶段的应用与展望[J]. 航空制造技术, 2022, 65(17): 34-39. |
| REN Z Y, ZHOU H, ZHANG J, et al. Application and prospect of digital twin in design phase of aero-engine combustion chambers[J]. Aeronautical Manufacturing Technology, 2022, 65(17): 34-39 (in Chinese). | |
| 26 | GE. Digital twin technology [EB/OL]. . |
| 27 | 张志博, 江建玲, 贾博博. 数字孪生在压气机试验中的应用探索[J]. 航空动力, 2022(4): 63-66. |
| ZHANG Z B, JIANG J L, JIA B B. Digital twin in the compressor test [J]. Aviation Power, 2022(4): 63-66 (in Chinese). | |
| 28 | WU S, TIAN S, CHEN X, et al. Digital twin-driven blade rub-impact diagnosis using blade tip timing[J]. Measurement, 2024, 231: 114539. |
| 29 | REITENBACH S, VIEWEG M, BECKER R, et al. Collaborative aircraft engine preliminary design using a virtual engine platform, part a: Architecture and methodology[C]∥AIAA Scitech 2020 Forum. 2020: 0867. |
| 30 | GUAN J, LI Y, LIU J, et al. Experimental and numerical research on the performance characteristics of OPLVCR engine based on the NSGA II algorithm using digital twins[J]. Energy Conversion and Management, 2021, 236: 114052. |
| 31 | KRAFT J, KUNTZAGK S. Engine fleet-management: The use of digital twins from a MRO perspective[C]∥ Turbo Expo: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2017, 50770: V001T01A007. |
| 32 | TADEJA S K, SESHADRI P, KRISTENSSON P O. AeroVR: An immersive visualisation system for aerospace design and digital twinning in virtual reality[J]. The Aeronautical Journal, 2020, 124(1280): 1615-1635. |
| 33 | TADEJA S K, LU Y, SESHADRI P, et al. Digital twin assessments in virtual reality: An explorational study with aeroengines[C]∥2020 IEEE Aerospace Conference. 2020: 1-13. |
| 34 | XU Z, LA ROCCA A, PICKERING S L, et al. Mechanical and thermal design of an aeroengine start-er/generator [C]∥2015 IEEE International Electric Machines & Drives Conference (IEMDC). 2015: 1607-1613. |
| 35 | TAO F, ZHANG M,Digital twin shop-floor a new shop-floor paradigm towards smart manufacturing[J]. IEEE Access, 2027, 5: 20418-20427. |
| 36 | TAO F, ZHANG M, NEE AYC. Digital twin driven smart manufacturing[M]. Academic Press, 2019. |
| 37 | 王登勇, 乐华勇, 朱荻. 薄壁回转体表面岛屿状高凸台结构旋印电解加工成形过程研究[J]. 机械工程学报, 2023, 59(3): 337-348. |
| WANG D Y, LE H Y, ZHU D. Investigation of the shaping process of island-like high convex structure on thin-walled revolving part during counter-rotating electrochemical machining[J]. Journal of Mechanical Engineering, 2023, 59(3): 337-348 (in Chinese). | |
| 38 | 赵罡, 李瑾岳, 徐茂程, 等. 航空发动机关键装配技术综述与展望[J]. 航空学报, 2022, 43(10): 527484. |
| ZHAO G, LI J Y, XU M C, et al. Research status and prospect of key aeroengine assembly technology[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(10): 527484 (in Chinese). | |
| 39 | 曹增义, 单继东, 王昭阳, 等. 面向航空发动机制造的数字孪生应用架构探索与实践[J]. 航空制造技术, 2022, 65(19): 40-49. |
| CAO Z Y, SHAN J D, WANG Z Y, et al. Exploration and practice of digital twin architecture for aero-engine manufacturing[J]. Aeronautical Manufacturing Technology, 2022, 65(19): 40-49 (in Chinese). | |
| 40 | 孙惠斌, 颜建兴, 魏小红, 等. 数字孪生驱动的航空发动机装配技术[J].中国机械工程, 2020, 31(7): 833-841. |
| SUN H B, YAN J X, WEI X H, et al. Digital twin-driven aero-engine assembly technology[J]. China Mechanical Engineering, 2020, 31(7): 833-841 (in Chinese). | |
| 41 | LI J, ZHOU G, ZHANG C. A twin data and knowledge-driven intelligent process planning framework of aviation parts[J]. International Journal of Production Research, 2022, 60(17): 5217-5234. |
| 42 | ZHANG C, SUN Q C, SUN W, et al. A construction method of digital twin model for contact characteristics of assembly interface[J]. The International Journal of Advanced Manufacturing Technology, 2021, 113: 2685-2699. |
| 43 | ZHAO B B, WANG Y L, SUN Q C, et al. Monomer model: an integrated characterization method of geo-metrical deviations for assembly accuracy analysis[J]. Assembly Automation, 2021, 41(4): 514-523. |
| 44 | 吴法勇, 王维斌, 陈雪骑, 等. 数字孪生驱动的转子装配及不平衡分布[J/OL]. 北京航空航天大学学报, . |
| WU F Y, WANG W B, CHEN X Q, et al. Rotor assembly and unbalance distribution driven by digital twins[J/OL]. Journal of Beijing University of Aeronautics and Astronautics, (in Chinese). | |
| 45 | LEE W Y, DAWES W D, COULL J D. The required aerodynamic simulation fidelity to usefully support a gas turbine digital twin for manufacturing[J]. Journal of the Global Power and Propulsion Society, 2021, 5: 15-27. |
| 46 | CAI H, ZHU J, ZHANG W. Quality deviation control for aircraft using digital twin[J]. Journal of Computing and Information Science in Engineering, 2021, 21(3): 031008. |
| 47 | LI J Y, ZHAO G, ZHANG P, et al. A Digital Twin-based on-site quality assessment method for aero-engine assembly[J]. Journal of Manufacturing Systems, 2023, 71: 565-580 |
| 48 | 石嵩, 刘检华, 巩浩, 等. 考虑粗糙表面接触配合的航空发动机多级转子装配误差传递建模[J]. 机械工程学报, 2023, 59(17): 208-219. |
| SHI S, LIU J H, GONG H, et al. Modeling of error transfer in multistage rotors assembly of aero engine considering rough surface contact[J]. Journal of Mechanical Engineering, 2023, 59(17): 208-219 (in Chinese). | |
| 49 | 吴腾云, 唐松松. 基于数字孪生的航空发动机工艺设计系统构建方法[J].自动化技术与应用, 2024, 43(6): 69-73. |
| WU T Y, TANG S S. Construction method of aircraft engine process design system based on digital twin[J]. Techniques of Automation & Applications, 2024, 43(6): 69-73 (in Chinese). | |
| 50 | SCHLEICH B, ANWER N, MATHIE L, et al. Shaping the digital twin for design and production engineering[J]. CIRP Annals-Manufacturing Technology, 2017, 66(1): 141-144. |
| 51 | SUN H, WANG J, CHEN K, et al. A tip clearance prediction model for multistage rotors and stators in aero-engines [J]. Chinese Journal of Aeronautics, 2021, 34(2): 343–357. |
| 52 | 张譍之, 孙惠斌, 周平, 等. 数字孪生驱动的转静子装配间隙动态预测与调控[J]. 计算机集成制造系统, 2023, 29(6): 2035-2046. |
| ZHANG Y Z, SUN H B, ZHOU P, et al. Digital twin-driven dynamic prediction and control method for assembly clearance of multi-stage rotor and stator [J]. Computer Integrated Manufacturing Systems, 2023, 29(6): 2035-2046 (in Chinese). | |
| 53 | SEGALMAN D J, GREGORY D L, STARR M J, et al. Handbook on dynamics of jointed structures[R]. Sandia National Laboratories, Albuquerque, 2009: 1028891. |
| 54 | 刘宁, 陶智. 旋转状态气膜冷却的大涡模拟[J]. 北京航空航天大学学报, 2010, 36(5): 529-533. |
| LIU N, TAO Z. Large eddy simulation of film cooling under rotating condition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(5): 529-533 (in Chinese). | |
| 55 | 葛向东, 吴法勇, 刘永泉, 等. 航空发动机整机振动问题研究方法及工程应用[J]. 航空学报, 2024, 45(4): 628353. |
| GE X D, WU F Y, LIU Y Q, et al. Research methods for whole aeroengine vibration and their engineering application[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(4): 628353 (in Chinese). | |
| 56 | 漆琪, 杨吉祥, 丁汉. 面向航空发动机复杂机匣深腔测量的机器人位姿优化及关节路径平滑方法 [J]. 机械工程学报, 2023, 59 (15): 17-27. |
| QI Q, YANG J X, DING H. Robot pose optimization and joint path smoothing method for aero-engine complex casing deep cavity measurement[J]. Journal of Mechanical Engineering, 2023, 59(15): 17-27 (in Chinese). | |
| 57 | SUN Q C, YUAN B, MU X K, et al. Bolt preload measurement based on the acoustoelastic effect using smart piezoelectric bolt[J]. Smart Materials and Structures, 2019, 28(5): 055005. |
| 58 | YUAN B, SUN Q C, WANG X X, et al. A novel acoustic model for interface stiffness measurement of dry tribological interface considering geometric dispersion effect and boundary effect[J]. Tribology International, 2021, 162: 107140. |
| 59 | MU X K, WANG Y L, YUAN B, et al. A new assembly precision prediction method of aeroengine high-pressure rotor system considering manufacturing error and deformation of parts [J]. Journal of Manufacturing Systems, 2021, 61: 112-124. |
| 60 | 谷振鹏, 邓宏武, 陶智, 等. 旋转状态下叶片前缘复合换热实验[J].北京航空航天大学学报, 2011, 37(11): 1404-1409. |
| GU Z P, DENG H W, TAO Z, et al. Experiments of combined heat transfer in leading of blades at rotating state[J]. Journal of Beijing University of Aeronautics and Astronautic, 2011, 37(11): 1404-1409 (in Chinese). | |
| 61 | BOTZ M, EMIROGLU A, OSTERMINSKI K . et al. Monitoring and modeling of a wind turbine support structure to create a digital twin[J]. Beton Stahlbetonbau, 2020, 115: 342-354. |
| 62 | BRANLARD E, JONKMAN J, DANA S, et al. Digital twin based on OpenFAST linearizations for real-time load and fatigue estimation of land-based turbines[J]. Journal of Physics: Conference Series, 2020, 1618: 022030. |
| 63 | ZACCARI V, STENFELT M, ASLANIDOU I, et al. Fleet monitoring and diagnostics framework based on digital twin of aero-engines[C]∥Proceedings of the ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, 2018. |
| 64 | 梅英杰, 王大伟, 孙传智, 等. 基于增强现实的航空发动机机匣数字孪生测调系统[J/OL]. 航空学报, doi: 10.7527/S1000-6893.2023.29462 . |
| MEI Y J, WANG D W, SUN C Z, et al. A digital twin testing and adjusting system for aero-engine casings based on augment-ed reality[J]. Acta Aeronautica et Astronautica Sinica, 10.7527/S1000-6893.2023.29462 (in Chinese). | |
| 65 | TAO F, ZAHNG M, LIU Y, et al. Digital twin driven prognostics and health management for complex equipment[J]. CIRP Annals, 2018, 67(1): 169-172. |
| 66 | 曹建国. 航空发动机仿真技术研究现状、挑战和展望[J]. 推进技术, 2018, 39(5): 961-970. |
| CAO J G. Status, challenges and perspectives of aero-engine simulation technology[J]. Journal of propulsion technology, 2018, 39(5): 961-970 (in Chinese). | |
| 67 | GRIEVES M, VICKERS J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems[J]. Transdisciplinary Perspectives on Complex Systems: New Findings and Approaches, 2017: 85-113. |
| 68 | 刘魁, 王潘, 刘婷. 数字孪生在航空发动机运行维护中的应用[J]. 航空动力, 2019(4): 70-74. |
| LIU K, WANG P, LIU T. The application of digital twin in aero engine operation and maintenance[J]. Aerospace Power, 2019(4): 70-74 (in Chinese). | |
| 69 | 吴雄, 彭云龙, 张波, 等. 基于数字孪生的舰载机发动机健康管理技术[J]. 航空动力, 2022(4): 33-36. |
| WU X, PENG Y L, ZHANG B, et al. Health management technology for carrier based aircraft engines based on digital twins[J]. Aviation Power, 2022(4): 33-36 (in Chinese). | |
| 70 | 曹明, 黄金泉, 周健, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇-气路、机械和FADEC系统故障诊断与预测[J]. 航空学报, 2022, 43(9): 625573. |
| CAO M, HUANG J Q, ZHOU J, et al. Current status, challenges and opportunities of civil aero engine diagnostics & health management I: Diagnosis and prognosis of engine gas path, mechanical and FADEC[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625573 (in Chinese). | |
| 71 | EZHILARASU C M, JENNIONS I K. A system-level failure propagation detectability using ANFIS for an aircraft electrical power system[J]. Applied Sciences, 2020, 10(8): 2854. |
| 72 | PENG C C, CHEN Y H. Digital twins-based online monitoring of TFE-731 turbofan engine using Fast orthogonal search[J]. IEEE Systems Journal, 2021, 16(2): 3060-3071. |
| 73 | 王诗彬, 王世傲, 陈雪峰, 等. 可解释性智能监测诊断网络构造及航空发动机整机试车与中介轴承诊断应用[J]. 机械工程学报, 2024, 60(12): 90-106. |
| WANG S B, WANG S A, CHEN X F, et al. Interpretable network construction for intelligent monitoring and diagnosis, and application in inter-shaft bearing diagnosis while aero-engine test[J]. Journal of Mechanical Engineering, 2024, 60(12): 90-106 (in Chinese). | |
| 74 | STOUMPOS S, THEOTOKATOS G. A novel methodology for marine dual fuel engines sensors diagnostics and health management[J]. International Journal of Engine Research, 2021: 1468087421998635. |
| 75 | MOSALLAM A, MEDJAHER K, ZERHOUNI N. Data-driven prognostic method based on Bayesian approaches for direct remaining useful life prediction[J]. Journal of Intelligent Manufacturing, 2016, 27(5): 1037-1048. |
| 76 | XIONG M, WANG H, FU Q, et al. Digital twin-driven aero-engine intelligent predictive maintenance[J]. The International Journal of Advanced Manufacturing Technology, 2021, 114(11): 3751-3761. |
| 77 | 付洋, 曹宏瑞, 郜伟强, 等. 数字孪生驱动的航空发动机涡轮盘剩余寿命预测[J]. 机械工程学报, 2021, 57(22): 106-113. |
| FU Y, CAO H R, GAO W Q, et al. Digital twin driven remaining useful life prediction for aero-engine turbine discs[J]. Journal of Mechanical Engineering, 2021, 57(22): 106-113 (in Chinese). | |
| 78 | 曹明, 王鹏, 左洪福, 等. 民用航空发动机故障诊断与健康管理现状、挑战与机遇Ⅱ: 地面综合诊断、寿命管理和智能维护维修决策[J]. 航空学报, 2022, 43(9): 625574. |
| CAO M, WANG P, ZUO H F, et al. Current status, challenges and opportunities of civil aero-engine diagnostics & health management Ⅱ: Comprehensive off-board diagnostics, life management and intelligent condition based MRO[J]. Acta Aeronautica et Astronautica Sinica, 2022, 43(9): 625574 (in Chinese). | |
| 79 | MARTINSSON J, PANAROTTO M, KOKKOLARAS M, et al. Exploring the potential of digital twin-driven design of aero-engine structures[J]. Proceedings of the Design Society, 2021, 1: 1521-1528. |
| 80 | 刘蔚然, 陶飞, 程江峰, 等. 数字孪生卫星:概念、关键技术及应用[J].计算机集成制造系统, 2020, 26(3): 565-588. |
| LIU W R, TAO F, CHENG J F, et al. Digital twin satellite: concept, key technologies, and application[J]. Computer Integrated Manufacturing Systems, 2020, 26(3): 565-588 (in Chinese). | |
| 81 | 陶飞, 张贺, 戚庆林, 等. 数字孪生模型构建理论及应用[J]. 计算机集成制造系统, 2021, 27(1): 1-15. |
| TAO F, ZHANG H, QI Q L, et al. Theory of digital twin modeling and its application[J]. Computer Integrated Manufacturing Systems, 2021, 27(1): 1-15 (in Chinese). | |
| 82 | TAO F, XIAO B, QI Q, et al. Digital twin modeling[J]. Journal of Manufacturing Systems, 2024, 64: 372-389. |
| 83 | ZHANG M, TAO F, HUANG B, et al. Digital twin data: methods and key technologies[J]. Digital Twin, 2022, 1: 2. |
| 84 | TAO F, QI Q, LIU A, et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems, 2018, 48: 157-169. |
| 85 | TAO F, QI Q, NEE AYC, Digital Twin Driven Ser-vice [M]. Academic Press, 2022. |
| 86 | 陶飞, 马昕, 戚庆林, 等. 数字孪生连接交互理论与关键技术[J].计算机集成制造系统, 2023, 29(1): 1-10. |
| TAO F, MA X, QI Q L, et al. Theory and key technologies of digital twin connection and interaction[J]. Computer Integrated Manufacturing Systems, 2023, 29(1): 1-10 (in Chinese). | |
| 87 | 陶飞, 张萌, 程江峰, 等. 数字孪生车间——一种未来车间运行新模式[J]. 计算机集成制造系统, 2017, 23(1): 1-9. |
| TAO F, ZHANG M, CHENG J F, et al. Digital twin workshop: a new paradigm for future workshop[J]. Computer Integrated Manufacturing Systems, 2017, 23(1): 1-9 (in Chinese). | |
| 88 | 陶飞, 戚庆林, 张萌, 等. 数字孪生车间及应用实践[M]. 北京: 清华出版社, 2021. |
| TAO F, QI Q L, ZHANG M, et al. Digital twin and its application in shopfloor [M]. Beijing: Tsinghua University Press, 2021 (in Chinese). | |
| 89 | QI Q L, TAO F, Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison [J]. IEEE Access, 2018, 6: 3585-3593. |
| 90 | 陶飞, 张辰源, 戚庆林, 等. 数字孪生成熟度模型[J].计算机集成制造系统, 2022, 28(5): 1267-1281. |
| TAO F, ZHANG C Y, QI Q L, et al. Digital twin maturity model[J]. Computer Integrated Manufacturing Systems, 2022, 28(5): 1267-1281 (in Chinese). |
| [1] | Guanwei YAO, Gaowen LIU, Yan CHEN, Xiaozhi KONG, Aqiang LIN. Forward design of high-performance turbine low-radius pre-swirl system [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(7): 130832-130832. |
| [2] | Yaling HE, Tao JIANG, Shen DU, Guoqiang XU. Research progress on performance boundary of air heat exchanger within flight envelope [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(5): 531745-531745. |
| [3] | Xianzhao YANG, Gaowen LIU, Lingying GUO, Jiale MA, Aqiang LIN. Design of turbine high radius pre-swirl system with high temperature drop [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(2): 130672-130672. |
| [4] | Yiwei HUANG, Yibin GENG, Tianhe GAO, Xuanwei HU, Yuan WANG, Hongyan MA, Kuo TIAN. Digital twin driven high precision reconstruction method for full-field deformation of structure [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 530967-530967. |
| [5] | Dingqiang DAI, Xuan ZHOU, Leiting DONG, Xiasheng SUN. Research progress and prospects of digital engineering and digital twin in field of aeronautical fatigue and structural integrity [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531022-531022. |
| [6] | Shangyu LI, Hang FENG, Junquan CHEN, Bin CHEN, Dan MEI. A design architecture and conceptual modeling approach for digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531118-531118. |
| [7] | Junqi LEI, Yuehua CHENG, Bin JIANG, Cheng XU, Guili XU, Tianyu SUN. Digital-twin’s modelling and dynamic adjustment mechanism of rudder-loop-system under fault conditions [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531273-531273. |
| [8] | Liang CHEN, Lei HUANG, Yuxuan GU, Cong GUO, Kexin LIN, Yu GUAN, Jian SONG. Twinning technology of key part load based on flight parameters [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531292-531292. |
| [9] | Yuxuan GU, Cong GUO, Lei HUANG, Yifei DONG, Hongda DONG, Zhilun DENG. Refined management of fleet life driven by digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531290-531290. |
| [10] | Yinxuan ZHANG, Qi ZHANG, Zhenyong XU, Linshu MENG. Predicting method of aircraft mechanical response based on residual neural networks [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531295-531295. |
| [11] | Ruoyao XIAO, Lianyu ZHENG, Jian ZHOU, Siru ZHAO, Jieru ZHANG, Yuwu CHEN. Online optimization method for positioning accuracy in cylindrical components aligning based on digital twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531978-531978. |
| [12] | Jialiang HU, Jiangpeng WU, Sixu HUO, Yidi GAO, Hua ZHENG. Modal parameter estimation based on reconstruction of digital twin sweep data in flutter flight test [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 531602-531602. |
| [13] | Pengfei WANG, Lifang ZENG, Xueming SHAO, Jun LI. Multi-source data fusion modeling method for aerodynamic load of aircraft wing based on pre-training and fine-tuning [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532297-532297. |
| [14] | Yifei WANG, Geyong CAO, Yang CAO, Xiaojun WANG. Uncertainty technologies in aircraft digital strength twins [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532408-532408. |
| [15] | Liang CHEN, Fanxing MENG, Chengbo WANG, Yinxuan ZHANG, Linshu MENG. Development and application of digital twins technology in aircraft strength design [J]. Acta Aeronautica et Astronautica Sinica, 2025, 46(19): 532252-532252. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341

