Acta Aeronautica et Astronautica Sinica ›› 2024, Vol. 45 ›› Issue (14): 630241-630241.doi: 10.7527/S1000-6893.2024.30241
• special column • Previous Articles
Xinlin XIAO, Weichao SHI, Xiangtao ZHENG(), Yueming GAO, Xiaoqiang LU
Received:
2024-01-26
Revised:
2024-03-03
Accepted:
2024-03-26
Online:
2024-07-25
Published:
2024-04-10
Contact:
Xiangtao ZHENG
E-mail:xiangtaoz@gmail.com
Supported by:
CLC Number:
Xinlin XIAO, Weichao SHI, Xiangtao ZHENG, Yueming GAO, Xiaoqiang LU. Multiple models collaboration for ship detection[J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 630241-630241.
Table 4
Comparative experiments with fusion methods
方法 | DOTA | xView | |||
---|---|---|---|---|---|
AP0.5 | AP0.95 | AP0.5 | AP0.95 | ||
仅主网络 | 0.559 | 0.337 | 0.440 | 0.197 | |
数据集成 | DOTA/xView with LEVIR+DIOR+HRRSD | 0.708 | 0.462 | 0.528 | 0.281 |
模型集成 | NMS [ | 0.642 | 0.426 | 0.537 | 0.285 |
Soft-NMS [ | 0.647 | 0.431 | 0.540 | 0.287 | |
WBF [ | 0.673 | 0.442 | 0.545 | 0.290 | |
模型交互 | MMDF-Net [ | 0.631 | 0.401 | 0.469 | 0.241 |
SSMD [ | 0.679 | 0.434 | 0.461 | 0.238 | |
本文方法 | 0.735 | 0.493 | 0.551 | 0.299 |
1 | REN S Q, HE K M, GIRSHICK R, et al. Faster R-CNN: Towards real-time object detection with region proposal networks[C]∥ Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. New York: ACM, 2015: 91–99. |
2 | ZHANG Y Y, LU T W. RecFRCN: Few-shot object detection with recalibrated faster R-CNN[J]. IEEE Access, 2023, 11: 121109-121117. |
3 | FAN J Y, LEE J, JUNG I, et al. Improvement of object detection based on faster R-CNN and YOLO[C]∥2021 36th International Technical Conference on Circuits/Systems, Computers and Communications (ITC-CSCC). Piscataway: IEEE Press, 2021: 1-4. |
4 | KÖREZ A, BARISCI N. Object detection with low capacity GPU systems using improved faster R-CNN[J]. Applied Sciences, 2019, 10(1): 83. |
5 | 周兵, 李润鑫, 尚振宏, 等. 基于改进的Faster R-CNN目标检测算法[J]. 激光与光电子学进展, 2020, 57(10): 101009. |
ZHOU B, LI R X, SHANG Z H, et al. Object detection algorithm based on improved faster R-CNN[J]. Laser & Optoelectronics Progress, 2020, 57(10): 101009 (in Chinese). | |
6 | ABBAS S M, SINGH D S N. Region-based object detection and classification using faster R-CNN[C]∥ 2018 4th International Conference on Computational Intelligence & Communication Technology (CICT). Piscataway: IEEE Press, 2018: 1-6. |
7 | GAVRILESCU R, ZET C, FOȘALĂU C, et al. Faster R-CNN: An approach to real-time object detection[C]∥ 2018 International Conference and Exposition on Electrical and Power Engineering (EPE). Piscataway: IEEE Press, 2018: 165-168. |
8 | REN Y, ZHU C R, XIAO S P. Small object detection in optical remote sensing images via modified faster R-CNN[J]. Applied Sciences, 2018, 8(5): 813. |
9 | RAKHI A M, DHORAJIYA A P, SARANYA P. Enhanced mask-RCNN for ship detection and segmentation[C]∥International Conference on Ubiquitous Computing and Intelligent Information Systems. Singapore: Springer, 2022: 199-210. |
10 | FANG Y X, DAI Y, HE G L, et al. A mask RCNN based automatic reading method for pointer meter[C]∥2019 Chinese Control Conference (CCC). Piscataway: IEEE Press, 2019: 8466-8471. |
11 | ZHANG F, WANG X Y, ZHOU S L, et al. Arbitrary-oriented ship detection through center-head point extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5612414. |
12 | HUANG B, XU T F, LUO Y X, et al. A novel nearest feature learning classifier for ship target detection in optical remote sensing images[C]∥International Conference in Communications, Signal Processing, and Systems. Singapore: Springer, 2019: 600-606. |
13 | NAJIBI M, SINGH B, DAVIS L. AutoFocus: Efficient multi-scale inference[C]∥2019 IEEE/CVF International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2019: 9744-9754. |
14 | QUAN Y, ZHANG D, ZHANG L Y, et al. Centralized feature pyramid for object detection[J]. IEEE Transactions on Image Processing, 2023, 32: 4341-4354. |
15 | CHANG Y J, WU Y D, LIAO Y L, et al. Modified YOLO network model for metaphase cell detection in antinuclear antibody images[J]. Engineering Applications of Artificial Intelligence, 2024, 127: 107392. |
16 | XING Y G, YI Z P, LIANG Z X, et al. Edge-on low-surface-brightness galaxy candidates detected from SDSS images using YOLO[J]. The Astrophysical Journal Supplement Series, 2023, 269(2): 59. |
17 | CHEN L Q, SHI W X, FAN C E, et al. A novel coarse-to-fine method of ship detection in optical remote sensing images based on a deep residual dense network[J]. Remote Sensing, 2020, 12(19): 3115. |
18 | SONG W S, YAN D M, YAN J, et al. Ship detection and identification in SDGSAT-1 glimmer images based on the glimmer YOLO model[J]. International Journal of Digital Earth, 2023, 16(2): 4687-4706. |
19 | WANG J, PAN Q R, LU D H, et al. An efficient ship-detection algorithm based on the improved YOLOv5[J]. Electronics, 2023, 12(17): 3600. |
20 | HA H Y, FLEITES F, CHEN S C. Building multi-model collaboration in detecting multimedia semantic concepts[C]∥Proceedings of the 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing. Piscataway: IEEE Press, 2013: 205-212. |
21 | ZHANG Y N, TONG X M, YANG T, et al. Multi-model estimation based moving object detection for aerial video[J]. Sensors, 2015, 15(4): 8214-8231. |
22 | MA W P, GUO Q Q, WU Y, et al. A novel multi-model decision fusion network for object detection in remote sensing images[J]. Remote Sensing, 2019, 11(7): 737. |
23 | XU J, WANG W, WANG H Y, et al. Multi-model ensemble with rich spatial information for object detection[J]. Pattern Recognition, 2020, 99: 107098. |
24 | KUNDID VASIĆ M, PAPIĆ V. Multimodel deep learning for person detection in aerial images[J]. Electronics, 2020, 9(9): 1459. |
25 | YANG D F, SOLIHIN M I, ZHAO Y W, et al. A review of intelligent ship marine object detection based on RGB camera[J]. IET Image Processing, 2024, 18(2): 281-297. |
26 | FINGAS M F, BROWN C E. Review of ship detection from airborne platforms[J]. Canadian Journal of Remote Sensing, 2001, 27(4): 379-385. |
27 | YASIR M, WAN J H, XU M M, et al. Ship detection based on deep learning using SAR imagery: A systematic literature review[J]. Soft Computing, 2023, 27(1): 63-84. |
28 | TEIXEIRA E, ARAUJO B, COSTA V, et al. Literature review on ship localization, classification, and detection methods based on optical sensors and neural networks[J]. Sensors, 2022, 22(18): 6879. |
29 | LIN Y, WANG C F, CHANG C Y, et al. An efficient framework for counting pedestrians crossing a line using low-cost devices: The benefits of distilling the knowledge in a neural network[J]. Multimedia Tools and Applications, 2021, 80(3): 4037-4051. |
30 | XIA G S, BAI X, DING J, et al. DOTA: A large-scale dataset for object detection in aerial images[C]∥2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE Press, 2018: 3974-3983. |
31 | BYNUM L, DOSTER T, EMERSON T H, et al. Rotational equivariance for object classification using xView[C]∥IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium. Piscataway: IEEE Press, 2020: 3684-3687. |
32 | LI K, WAN G, CHENG G, et al. Object detection in optical remote sensing images: A survey and a new benchmark[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2020, 159: 296-307. |
33 | ZHANG Y L, YUAN Y, FENG Y C, et al. Hierarchical and robust convolutional neural network for very high-resolution remote sensing object detection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(8): 5535-5548. |
34 | ZOU Z X, SHI Z W. Random access memories: A new paradigm for target detection in high resolution aerial remote sensing images[J]. IEEE Transactions on Image Processing, 2018, 27(3): 1100-1111. |
35 | NEUBECK A, VAN GOOL L. Efficient non-maximum suppression[C]∥18th International Conference on Pattern Recognition (ICPR’06). Piscataway: IEEE Press, 2006: 850-855. |
36 | BODLA N, SINGH B, CHELLAPPA R, et al. Soft-NMS—improving object detection with one line of code[C]∥2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE Press, 2017: 5562-5570. |
37 | SOLOVYEV R, WANG W M, GABRUSEVA T. Weighted boxes fusion: Ensembling boxes from different object detection models[J]. Image and Vision Computing, 2021, 107: 104117. |
38 | WANG C Y, BOCHKOVSKIY A, LIAO H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]∥2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE Press, 2023: 7464-7475. |
39 | GE Z, LIU S T, WANG F, et al. YOLOX: Exceeding YOLO series in 2021[DB/OL]. arXiv preprint: 2107.08430, 2021. |
40 | CHEN Z, LIU C, FILARETOV V, et al. Multi-scale ship detection algorithm based on YOLOv7 for complex scene SAR images[J]. Remote Sensing, 2023, 15(8): 2071. |
[1] | Qichang ZHAO, Yiquan WU, Yubin YUAN. Progress of ship detection and recognition methods in optical remote sensing images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(8): 29025-029025. |
[2] | Ziling WANG, Zhenyu XIONG, Lucheng YANG, Ruining YANG, Linzhou HUANG. Spaceborne SAR ship target recognition network guided by AIS and optical remote sensing images [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(2): 328672-328672. |
[3] | Yanfang LIU, Jiayu SHE, Qiufan YUAN, Rui ZHOU, Naiming QI. Real⁃time small target detection networks for UAV remote sensing [J]. Acta Aeronautica et Astronautica Sinica, 2024, 45(14): 630119-630119. |
[4] | Liqun CHEN, Xu ZOU, Lei ZHANG, Yingpan ZHU, Gang WANG, Jinyong CHEN. On⁃board intelligent target detection technology based on domestic commercial components [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(S2): 728860-728860. |
[5] | Zhenyu XIONG, Yaqi CUI, Kai DONG, Mengyang LI, Wei XIONG. Interpretable fusion association network for multi-source remote sensing ship target based on attribute guidance [J]. Acta Aeronautica et Astronautica Sinica, 2023, 44(22): 627476-627476. |
[6] | WANG Ziling, XIONG Zhenyu, GU Xiangqi. Correlation learning algorithm of visible light and SAR cross modal remote sensing images [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 727239-727239. |
[7] | SU Hang, XU Congan, YAO Libo, LI Jianwei, LING Qing, GAO Long. A lightweight oriented ship detection method in SAR images [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2022, 43(S1): 726922-726922. |
[8] | LIU Jingyu, CUI Yufu, XU Meng, HE Hongyan, YIN Huan, WANG Yu. Image restoration method for TDICCD camera with micro vibration [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2018, 39(S1): 722230-722230. |
[9] | YANG Junli, JIANG Zhiguo, ZHOU Quan, ZHANG Haopeng, SHI Jun. Remote sensing image semantic labeling based on conditional random field [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(9): 3069-3081. |
[10] | YE Dong, TU Yuanyuan, SUN Zhaowei. Sliding mode control for nonparallel-ground-track imaging using Chebyshev neural network [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(9): 3092-3104. |
[11] | MENG Guang, ZHOU Xubin. Progress review of satellite micro-vibration and control [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2015, 36(8): 2609-2619. |
[12] | ZHAO Qinglei, LONG Kehui, HAN Chengshan, LI Xiangzhi, HUANG Liang. Space TDICCD Camera Imaging Parameters In-orbit Re-injection [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(8): 2271-2278. |
[13] | MENG Gang, HE Jie, BAO Li, WANG Jiantao, YAN Sunzhen, XU Jinping. Airport Runway Detection Based on Line Feature Detection of Partitioned Remote Sensing Images [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2014, 35(7): 1957-1965. |
[14] | LI Jun, LI Jun, ZHONG Zhinong, JING Ning, HU Weidong. Space-air Resources Multi-phase Cooperation Task Planning Approach Based on Heterogeneous MAS Model [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2013, 34(7): 1682-1697. |
[15] | LIU Zhanchao, FANG Jiancheng. Online Calibration of POS Error Based on Double Strapdown Algorithm [J]. ACTA AERONAUTICAET ASTRONAUTICA SINICA, 2012, 33(9): 1679-1687. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Address: No.238, Baiyan Buiding, Beisihuan Zhonglu Road, Haidian District, Beijing, China
Postal code : 100083
E-mail:hkxb@buaa.edu.cn
Total visits: 6658907 Today visits: 1341All copyright © editorial office of Chinese Journal of Aeronautics
All copyright © editorial office of Chinese Journal of Aeronautics
Total visits: 6658907 Today visits: 1341